cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226838 E.g.f.: exp( Sum_{n>=1} x^(n^2) / n^n ).

Original entry on oeis.org

1, 1, 1, 1, 7, 31, 91, 211, 1681, 25537, 192361, 949081, 4830871, 85109311, 951416467, 6696998491, 119863554721, 2004272484481, 25344895874641, 237953743909297, 4116426696101671, 65285723209356511, 903886886890585291, 10132514132979331171, 165368713321379497777, 9835535504812487849281
Offset: 0

Views

Author

Paul D. Hanna, Jun 19 2013

Keywords

Comments

E.g.f. may be written as: exp( Sum_{n>=1} ( x^n/n )^n ).
Sum_{n>=0} a(n)/n! = exp( Sum_{n>=1} 1/n^n ) = 3.63746131381110156231...

Examples

			E.g.f.: A(x) = 1 + x + x^2/2! + x^3/3! + 7*x^4/4! + 31*x^5/5! + 91*x^6/6! +...
where
log(A(x)) = x + x^4/2^2 + x^9/3^3 + x^16/4^4 + x^25/5^5 + x^36/6^6 + x^49/7^7 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=n!*polcoeff(exp(sum(m=1,n,(x^m/m)^m)+x*O(x^n)),n)}
    for(n=0,30,print1(a(n),", "))

Formula

a(n) == 1 (mod 6) (conjecture - valid up to n=1024; if true for n>=0, why?).