A226876 Number of n-length words w over a 6-ary alphabet {a1,a2,...,a6} such that #(w,a1) >= #(w,a2) >= ... >= #(w,a6) >= 0, where #(w,x) counts the letters x in word w.
1, 1, 3, 10, 47, 246, 1602, 6441, 35023, 175510, 1017158, 5412111, 33991322, 168112907, 982269641, 5378704155, 31714236863, 174819971462, 1082436507990, 5756932808211, 34302363988462, 193719726696345, 1150224854410151, 6482217725030141, 39812123155826626
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Column k=6 of A226873.
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(t=1, 1/n!, add(b(n-j, j, t-1)/j!, j=i..n/t)) end: a:= n-> n!*b(n, 0, 6): seq(a(n), n=0..30);