A226878 Number of n-length words w over an 8-ary alphabet {a1,a2,...,a8} such that #(w,a1) >= #(w,a2) >= ... >= #(w,a8) >= 0, where #(w,x) counts the letters x in word w.
1, 1, 3, 10, 47, 246, 1602, 11481, 95503, 508150, 3436358, 21822351, 153741722, 1047906107, 7987668041, 57017211075, 456108767423, 3047668772102, 22857224364630, 163293406206195, 1236484989279502, 9040845014760345, 70057104400850471, 517521934394653205
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Column k=8 of A226873.
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(t=1, 1/n!, add(b(n-j, j, t-1)/j!, j=i..n/t)) end: a:= n-> n!*b(n, 0, 8): seq(a(n), n=0..30);