A226879 Number of n-length words w over a 9-ary alphabet {a1,a2,...,a9} such that #(w,a1) >= #(w,a2) >= ... >= #(w,a9) >= 0, where #(w,x) counts the letters x in word w.
1, 1, 3, 10, 47, 246, 1602, 11481, 95503, 871030, 5250758, 38454351, 273492122, 2051148347, 15736849481, 125536061475, 1041102777023, 8537848507142, 74739775725270, 569218702884915, 4674633861692302, 37899687815748825, 312237339834676391, 2586068757754063445
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Column k=9 of A226873.
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(t=1, 1/n!, add(b(n-j, j, t-1)/j!, j=i..n/t)) end: a:= n-> n!*b(n, 0, 9): seq(a(n), n=0..30);