A226880 Number of n-length words w over a 10-ary alphabet {a1,a2,...,a10} such that #(w,a1) >= #(w,a2) >= ... >= #(w,a10) >= 0, where #(w,x) counts the letters x in word w.
1, 1, 3, 10, 47, 246, 1602, 11481, 95503, 871030, 8879558, 58412751, 473076122, 3607903547, 29782240841, 241773783075, 2137404383423, 18482746670342, 173563010955990, 1554987178737075, 15169020662626702, 126731980207937625, 1160565179374262951
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Column k=10 of A226873.
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(t=1, 1/n!, add(b(n-j, j, t-1)/j!, j=i..n/t)) end: a:= n-> n!*b(n, 0, 10): seq(a(n), n=0..30);
Comments