A226883 Number of n-length words w over a 4-ary alphabet {a1,a2,...,a4} such that #(w,a1) >= #(w,a2) >= ... >= #(w,a4) >= 1, where #(w,x) counts the letters x in word w.
24, 60, 300, 1260, 6496, 20916, 95640, 353760, 1600104, 5626764, 23844002, 88442445, 387629456, 1389902524, 5788974504, 21752247660, 93252286444, 340374221376, 1409907258122, 5335751835865, 22620834658096, 83728749708760, 345377277971570, 1315699675342065
Offset: 4
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 4..1000
Crossrefs
Column k=4 of A226874.
Programs
-
Mathematica
Table[Sum[n!/Product[IntegerPartitions[n,{4}][[k,j]]!,{j,1,4}],{k,1,Length[ IntegerPartitions[n,{4}]]}],{n,4,20}] (* Vaclav Kotesovec, Jul 01 2013 *)