A226886 Number of n-length words w over a 7-ary alphabet {a1,a2,...,a7} such that #(w,a1) >= #(w,a2) >= ... >= #(w,a7) >= 1, where #(w,x) counts the letters x in word w.
5040, 20160, 151200, 907200, 6431040, 42577920, 326280240, 2437475040, 15076381320, 101442781440, 685186844160, 4578510605760, 31826713309344, 215132601512160, 1519348223060640, 9879977905237440, 67264821737934744, 453057807190266432, 3094793914863208800
Offset: 7
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 7..1000
Crossrefs
Column k=7 of A226874.