cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226890 E.g.f.: exp( Sum_{n>=1} sigma(n,n) * x^(n^2) / n^n ).

Original entry on oeis.org

1, 1, 1, 1, 31, 151, 451, 1051, 33601, 663601, 5187001, 25905001, 254322751, 10408719751, 128046088171, 920598820051, 29249420054401, 723848667813601, 12441294278905201, 138598703861148241, 4406639731521827551, 93453608310743628151, 1932981245635597160851, 27744052310106087405451
Offset: 0

Views

Author

Paul D. Hanna, Jun 20 2013

Keywords

Comments

Here sigma(n,n) = A023887(n), the sum of the n-th powers of the divisors of n.
Compare to: exp( Sum_{n>=1} sigma(n)*x^n/n ), the g.f. of the partitions.

Examples

			E.g.f.: A(x) = 1 + x + x^2/2! + x^3/3! + 31*x^4/4! + 151*x^5/5! + 451*x^6/6! +...
where
log(A(x)) = x + 5*x^4/2^2 + 28*x^9/3^3 + 273*x^16/4^4 + 3126*x^25/5^5 + 47450*x^36/6^6 + 823544*x^49/7^7 +...+ A023887(n)*x^(n^2)/n^n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=n!*polcoeff(exp(sum(m=1,n,sigma(m,m)*(x^m/m)^m)+x*O(x^n)),n)}
    for(n=0,30,print1(a(n),", "))

Formula

a(n) == 1 (mod 30) (conjecture - valid up to n=4000; if true for n>=0, why?).