cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226901 Partial sums of Hooley's Delta function.

Original entry on oeis.org

1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 19, 20, 22, 24, 26, 27, 29, 30, 33, 35, 37, 38, 42, 43, 45, 46, 48, 49, 52, 53, 55, 56, 58, 60, 63, 64, 66, 67, 71, 72, 75, 76, 78, 80, 82, 83, 87, 88, 90, 91, 93, 94, 96, 98, 101, 102, 104, 105, 109, 110, 112, 114, 116, 118, 120, 121
Offset: 1

Views

Author

Keywords

Comments

Tenenbaum (1985) proves that a(n) < n exp(c sqrt(log log n log log log n)) for some constant c > 0 and all n > 16. Numerically, c appears to be close to 0.5 or 0.55.

References

  • R. R. Hall and G. Tenenbaum, On the average and normal orders of Hooley's ∆-function, J. London Math. Soc. (2), Vol. 25, No. 3 (1982), pp. 392-406.
  • C. Hooley, On a new technique and its applications to the theory of numbers, Proc. London Math. Soc. 3 38:1 (1979), pp. 115-151.
  • Gérald Tenenbaum, Sur la concentration moyenne des diviseurs, Commentarii Mathematici Helvetici 60:1 (1985), pp. 411-428.

Crossrefs

Partial sums of A226898.

Programs

  • Maple
    with(numtheory):
    b:= n-> (l-> max(seq(nops(select(x-> is(x<=exp(1)*l[i]), l))-i+1,
            i=1..nops(l))))(sort([divisors(n)[]])):
    a:= proc(n) a(n):= b(n) +`if`(n=1, 0, a(n-1)) end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Jun 21 2013
  • Mathematica
    delta[n_] := Module[{d = Divisors[n], m = 1}, For[i = 1, i < Length[d], i++, t = E*d[[i]]; m = Max[Sum[Boole[d[[j]] < t], {j, i, Length[d]}], m]]; m];
    A226901 = Array[delta, 100] // Accumulate (* Jean-François Alcover, Mar 24 2017, translated from PARI *)
  • PARI
    Delta(n)=my(d=divisors(n), m=1); for(i=1, #d-1, my(t=exp(1)*d[i]); m=max(sum(j=i, #d, d[j]
    				

Formula

n log log n << a(n) << n (log log n)^(11/4); the lower bound is due to Hall & Tenenbaum (1988) and the upper bound to Koukoulopoulos & Tao.