A226901 Partial sums of Hooley's Delta function.
1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 19, 20, 22, 24, 26, 27, 29, 30, 33, 35, 37, 38, 42, 43, 45, 46, 48, 49, 52, 53, 55, 56, 58, 60, 63, 64, 66, 67, 71, 72, 75, 76, 78, 80, 82, 83, 87, 88, 90, 91, 93, 94, 96, 98, 101, 102, 104, 105, 109, 110, 112, 114, 116, 118, 120, 121
Offset: 1
Keywords
References
- R. R. Hall and G. Tenenbaum, On the average and normal orders of Hooley's ∆-function, J. London Math. Soc. (2), Vol. 25, No. 3 (1982), pp. 392-406.
- C. Hooley, On a new technique and its applications to the theory of numbers, Proc. London Math. Soc. 3 38:1 (1979), pp. 115-151.
- Gérald Tenenbaum, Sur la concentration moyenne des diviseurs, Commentarii Mathematici Helvetici 60:1 (1985), pp. 411-428.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Dimitris Koukoulopoulos and Terence Tao, A note on the mean value of the Erdős-Hooley Delta function, arXiv preprint (2023). arXiv:2306.08615 [math.NT]
Programs
-
Maple
with(numtheory): b:= n-> (l-> max(seq(nops(select(x-> is(x<=exp(1)*l[i]), l))-i+1, i=1..nops(l))))(sort([divisors(n)[]])): a:= proc(n) a(n):= b(n) +`if`(n=1, 0, a(n-1)) end: seq(a(n), n=1..100); # Alois P. Heinz, Jun 21 2013
-
Mathematica
delta[n_] := Module[{d = Divisors[n], m = 1}, For[i = 1, i < Length[d], i++, t = E*d[[i]]; m = Max[Sum[Boole[d[[j]] < t], {j, i, Length[d]}], m]]; m]; A226901 = Array[delta, 100] // Accumulate (* Jean-François Alcover, Mar 24 2017, translated from PARI *)
-
PARI
Delta(n)=my(d=divisors(n), m=1); for(i=1, #d-1, my(t=exp(1)*d[i]); m=max(sum(j=i, #d, d[j]
Formula
n log log n << a(n) << n (log log n)^(11/4); the lower bound is due to Hall & Tenenbaum (1988) and the upper bound to Koukoulopoulos & Tao.
Comments