A226939 A recursive variation of the Collatz-Fibonacci sequence: a(n) = 1 + min(a(C(n)),a(C(C(n)))) where C(n) = A006370(n), the Collatz map.
1, 1, 4, 2, 3, 5, 9, 2, 10, 4, 8, 5, 5, 9, 9, 3, 7, 11, 11, 4, 4, 8, 8, 6, 12, 6, 56, 10, 10, 10, 54, 3, 14, 7, 7, 11, 11, 11, 18, 5, 55, 5, 15, 9, 9, 9, 53, 6, 13, 13, 13, 6, 6, 57, 57, 10, 17, 10, 17, 10, 10, 54, 54, 4, 14, 14, 14, 8, 8, 8
Offset: 1
Keywords
Examples
a(n) values frequently depend on both lesser and higher terms: a(3)= 1+ min( a(C(3)), a(C(C(3)))) = 4 a(3)= 1+ min( a(10), a(5))= 1+min(4,3) = 4 a(10)=1+ min( a(5), a(16))= 1+min(3,3) = 4 a(5) =1+ min( a(16),a(8)) = 1+min(3,2) = 3 a(16)=1+ min( a(8), a(4)) = 1+min(2,2) = 3 a(8) =1+ min( a(4), a(2)) = 1+min(1,1) = 2 a(4) =1+ min( a(2), a(1)) = 1+min(1,1) = 2 a(2) =1 (starting value)
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A014682.
Programs
-
Blitz3D
function A(n) if n=1 or 2 return 1 else return 1 +lesser(A(C(n)), A(C(C(n)))) end if end function ; The Collatz Sequence generator equation Function C(n) If n Mod 2 Return 3*n+1 Else Return n Shr 1 End If End Function ;; Andres M. Torres, Jun 26 2013
-
PARI
C(n)=if(n%2,3*n+1,n/2) A=vector(10^4);A[1]=A[2]=1; a(n)=if(n<=#A && A[n], A[n], my(c=C(n),t=min(a(c), a(C(c)))+1); if(n>#A, t, A[n]=t)) \\ Charles R Greathouse IV, Jun 24 2013
Formula
a(n) = 1 + min(a(C(n)), a(C(C(n)))), where C(n) = A006370(n).
Comments