A226943 Semiprimes in the order in which they appear in the decimal expansion of Pi.
4, 14, 314, 141, 15, 415, 1415, 9, 159, 6, 26, 926, 5926, 15926, 65, 265, 2653, 92653, 592653, 35, 535, 6535, 5926535, 58, 358, 265358, 314159265358, 589, 3589, 53589, 2653589, 92653589, 1592653589, 1415926535897, 979, 5358979, 59265358979, 159265358979
Offset: 1
Examples
There are no semiprimes in the first 1 or 2 digits (3, 31). Then after 3 digits we have three: 4, 14, and 314 appearing for the first time. So a(1) = 4, a(2) = 14 and a(3) = 314.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..300
Programs
-
Mathematica
semiQ[n_] := Total[Last /@ FactorInteger@n ] == 2; sp = Select[Range@ 999, semiQ]; spQ[n_] := If[n < 10^6, semiQ@n, ! Or @@ IntegerQ /@ (n/sp) && semiQ@ n]; seq = {}; Do[seq = Join[seq, Select[Union@ Complement[ Mod[FromDigits@ RealDigits[Pi, 10, n][[1]], 10^Range[n, 1, -1]], seq], spQ]], {n, 30}]; seq (* Giovanni Resta, Oct 01 2013 *)
Comments