cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226945 Integer nearest f(10^n), where f(x) = Sum of ( mu(k) * H(k)/k^(3/2) * Integral Log(x^(1/k)) ) for k = 1 to infinity, where H(k) is the harmonic number sum_{i=1..k} 1/i.

Original entry on oeis.org

4, 25, 168, 1226, 9585, 78521, 664652, 5761512, 50847348, 455050385, 4118051652, 37607908133, 346065524108, 3204941711340, 29844570436484, 279238341185832, 2623557156537070, 24739954282695698, 234057667295619287, 2220819602542218793
Offset: 1

Views

Author

Arkadiusz Wesolowski, Aug 31 2013

Keywords

Comments

The sequence gives exactly the values of pi(10^n) for n = 1 to 3.
A228724 gives the difference between A006880 and this sequence.

Crossrefs

Programs

  • Mathematica
    f[n_Integer] := Sum[N[MoebiusMu[k]*HarmonicNumber[k]/k^(3/2)*LogIntegral[n^(1/k)], 50], {k, 5!}]; Table[Round[f[10^n]], {n, 20}]