A226963 Numbers n such that 1^n + 2^n + 3^n + ... + n^n == 5 (mod n).
1, 2, 5, 10, 30, 210, 9030, 235290, 11072512110
Offset: 1
Links
- M. A. Alekseyev, J. M. Grau, A. M. Oller-Marcen. Computing solutions to the congruence 1^n + 2^n + ... + n^n == p (mod n). Discrete Applied Mathematics, 2018. doi:10.1016/j.dam.2018.05.022 arXiv:1602.02407 [math.NT]
Crossrefs
Programs
-
Mathematica
Select[Range[10000], Mod[Sum[PowerMod[i, #, #], {i, #}], #] == 5 &]
-
PARI
is(n)=Mod(sumdiv(n, d, if(isprime(d+1), n/(d+1))), n)==-5 \\ Charles R Greathouse IV, Nov 13 2013
Extensions
Terms 1,2,5 prepended and a(9) added by Max Alekseyev, Aug 26 2013
Comments