cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226975 Decimal expansion I_1(1), the modified Bessel function of the first kind.

Original entry on oeis.org

5, 6, 5, 1, 5, 9, 1, 0, 3, 9, 9, 2, 4, 8, 5, 0, 2, 7, 2, 0, 7, 6, 9, 6, 0, 2, 7, 6, 0, 9, 8, 6, 3, 3, 0, 7, 3, 2, 8, 8, 9, 9, 6, 2, 1, 6, 2, 1, 0, 9, 2, 0, 0, 9, 4, 8, 0, 2, 9, 4, 4, 8, 9, 4, 7, 9, 2, 5, 5, 6, 4, 0, 9, 6, 4, 3, 7, 1, 1, 3, 4, 0, 9, 2, 6, 6, 4, 9, 9, 7, 7, 6, 6, 8, 1, 4, 4, 1, 0, 0, 6, 4, 6, 7, 7, 8, 8, 6
Offset: 0

Views

Author

Horst-Holger Boltz, Jun 25 2013

Keywords

Comments

This is also the derivative of the zeroth modified Bessel function at 1.

Examples

			0.56515910399248502720769602760986330732889962162109...
		

References

  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 51, page 504.

Crossrefs

Programs

  • Mathematica
    RealDigits[BesselI[1, 1], 10, 110][[1]]
  • PARI
    besseli(1,1) \\ Charles R Greathouse IV, Feb 19 2014
    
  • SageMath
    ((1/2) * sum(1 / (4^x * factorial(x) * rising_factorial(2, x)), x, 0, oo)).n(360)
    # Peter Luschny, Jan 29 2024

Formula

From Antonio GraciĆ” Llorente, Jan 29 2024: (Start)
I_1(1) = (1/2) * Sum_{k>=0} (2*k)/(4^k*k!^2) = (1/2) * Sum_{k>=0} (2*k)/A002454(k).
Equals (1/2) * Sum_{k>=0} (4*k^2 + 4*k - 1) / (2*k)!!^2.
Equals exp(-1) * Sum_{k>=0} binomial(2*k,k+1)/(2^k*k!).
Equals (-e) * Sum_{k>=0} (-1/2)^k * binomial(2*k,k+1)/k!
Equals (1/Pi)*Integral_{t=0..Pi} exp(cos(t))*cos(t) dt. (End)