cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226985 Sum of inverse of increasing integers with a difference of 0, 1, 2, 3, ...: 1 + 1/2 + 1/4 + 1/7 + 1/11 + 1/16 + 1/22 + 1/29 + 1/37 + ....

Original entry on oeis.org

2, 3, 7, 3, 6, 5, 4, 6, 7, 5, 4, 4, 0, 1, 0, 7, 7, 6, 4, 3, 2, 1, 6, 8, 6, 1, 2, 2, 2, 3, 7, 4, 3, 2, 4, 5, 1, 9, 1, 3, 8, 0, 5, 9, 0, 9, 4, 0, 6, 7, 1, 2, 0, 2, 9, 6, 7, 3, 3, 1, 3, 3, 8, 9, 1, 2, 5, 1, 1, 3, 6, 4, 7, 1, 0, 4, 5, 9, 2, 1, 3, 8, 9, 4, 1, 6, 3, 9, 7, 6, 6, 8, 2, 7, 8, 2, 9, 6, 7, 7, 5, 3, 3, 3, 3, 9
Offset: 1

Views

Author

Didier Guillet, Jun 25 2013

Keywords

Comments

This is a convergent series since the denominator is quadratic.
We can note that tanh(sqrt(7)*Pi/2) = 0.9995... which is close to 1 by 0.05% so this constant is very close to 2*Pi/sqrt(7). - Didier Guillet, Jul 12 2013

Examples

			2.3736546754401077643216861222374324519138059094067120296733133891251...
		

Crossrefs

Cf. A000124.

Programs

Formula

Sum_{k >= 1} 1/(1+k*(k-1)/2).
It equals 2*Pi*tanh(sqrt(7)*Pi/2)/sqrt(7). - Giovanni Resta, Jun 26 2013

Extensions

a(12)-a(87) from Giovanni Resta, Jun 26 2013