A226997 Irregular triangle read by rows: T(n,k) is the number of distinct tilings by squares of an n X n square lattice that contain k nodes unconnected to any of their neighbors.
1, 1, 1, 1, 4, 0, 0, 1, 1, 9, 16, 8, 5, 0, 0, 0, 0, 1, 1, 16, 78, 140, 88, 44, 68, 32, 0, 4, 0, 0, 0, 0, 0, 0, 1, 1, 25, 228, 964, 2003, 2178, 1842, 1626, 725, 290, 376, 184, 140, 76, 4, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 36, 520, 3920, 16859, 42944, 67312
Offset: 1
Examples
For n = 3, there are 4 tilings that contain 1 isolated node, so T(3,1) = 4. A 2 X 2 square contains 1 isolated node. Consider that each tiling is composed of ones and zeros where a one represents a node with one or more links to its neighbors and a zero represents a node with no links to its neighbors. Then the 4 tilings are: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 The irregular triangle begins: \ k 0 1 2 3 4 5 6 7 8 9 ... n 1 1 2 1 1 3 1 4 0 0 1 4 1 9 16 8 5 0 0 0 0 1 5 1 16 78 140 88 44 68 32 0 4 ... 6 1 25 228 964 2003 2178 1842 1626 725 290 ... 7 1 36 520 3920 16859 42944 67312 72980 69741 62952 ...
Links
- Alois P. Heinz, Rows n = 1..16, flattened (Rows n = 1..7 from Christopher Hunt Gribble)
Crossrefs
Cf. A045846.
Programs
-
Maple
b:= proc(n, l) option remember; local i, k, s, t; if max(l[])>n then 0 elif n=0 or l=[] then 1 elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l)) else for k do if l[k]=0 then break fi od; s:=0; for i from k to nops(l) while l[i]=0 do s:=s+x^((i-k)^2) *b(n, [l[j]$j=1..k-1, 1+i-k$j=k..i, l[j]$j=i+1..nops(l)]) od; expand(s) fi end: T:= n-> (l-> seq(coeff(l,x,i), i=0..degree(l)))(b(n, [0$n])): seq(T(n), n=1..9); # Alois P. Heinz, Jun 27 2013
Formula
Sum_{k=0..(n-1)^2} T(n,k) = A045846(n).
From Christopher Hunt Gribble, Jul 02 2013: (Start)
It appears that:
T(n,1) = (n-1)^2, n>1 = A000290(n-1).
T(n,2) = (n-2)(n-3)(n^2+n-4)/2, n>2 = A061995(n-1).
T(n,3) = (n-2)(n-3)(n^4-n^3-23n^2+15n+140)/6, n>2 = A061996(n-1).
T(n,4) = (n^8 - 8n^7 - 26*n^6 + 340*n^5 - 105*n^4 - 4708*n^3 + 6814*n^2 + 20852*n - 40248)/24, n>3. (End)
Comments