cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226997 Irregular triangle read by rows: T(n,k) is the number of distinct tilings by squares of an n X n square lattice that contain k nodes unconnected to any of their neighbors.

Original entry on oeis.org

1, 1, 1, 1, 4, 0, 0, 1, 1, 9, 16, 8, 5, 0, 0, 0, 0, 1, 1, 16, 78, 140, 88, 44, 68, 32, 0, 4, 0, 0, 0, 0, 0, 0, 1, 1, 25, 228, 964, 2003, 2178, 1842, 1626, 725, 290, 376, 184, 140, 76, 4, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 36, 520, 3920, 16859, 42944, 67312
Offset: 1

Views

Author

Keywords

Comments

The n-th row contains (n-1)^2 + 1 elements.

Examples

			For n = 3, there are 4 tilings that contain 1 isolated node, so T(3,1) = 4. A 2 X 2 square contains 1 isolated node.  Consider that each tiling is composed of ones and zeros where a one represents a node with one or more links to its neighbors and a zero represents a node with no links to its neighbors.  Then the 4 tilings are:
1 1 1 1    1 1 1 1    1 1 1 1    1 1 1 1
1 0 1 1    1 1 0 1    1 1 1 1    1 1 1 1
1 1 1 1    1 1 1 1    1 0 1 1    1 1 0 1
1 1 1 1    1 1 1 1    1 1 1 1    1 1 1 1
The irregular triangle begins:
\ k 0     1     2     3     4     5     6     7     8     9  ...
n
1   1
2   1     1
3   1     4     0     0     1
4   1     9    16     8     5     0     0     0     0     1
5   1    16    78   140    88    44    68    32     0     4  ...
6   1    25   228   964  2003  2178  1842  1626   725   290  ...
7   1    36   520  3920 16859 42944 67312 72980 69741 62952  ...
		

Crossrefs

Cf. A045846.

Programs

  • Maple
    b:= proc(n, l) option remember; local i, k, s, t;
          if max(l[])>n then 0 elif n=0 or l=[] then 1
        elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
        else for k do if l[k]=0 then break fi od; s:=0;
             for i from k to nops(l) while l[i]=0 do s:=s+x^((i-k)^2)
              *b(n, [l[j]$j=1..k-1, 1+i-k$j=k..i, l[j]$j=i+1..nops(l)])
             od; expand(s)
          fi
        end:
    T:= n-> (l-> seq(coeff(l,x,i), i=0..degree(l)))(b(n, [0$n])):
    seq(T(n), n=1..9);  # Alois P. Heinz, Jun 27 2013

Formula

Sum_{k=0..(n-1)^2} T(n,k) = A045846(n).
From Christopher Hunt Gribble, Jul 02 2013: (Start)
It appears that:
T(n,1) = (n-1)^2, n>1 = A000290(n-1).
T(n,2) = (n-2)(n-3)(n^2+n-4)/2, n>2 = A061995(n-1).
T(n,3) = (n-2)(n-3)(n^4-n^3-23n^2+15n+140)/6, n>2 = A061996(n-1).
T(n,4) = (n^8 - 8n^7 - 26*n^6 + 340*n^5 - 105*n^4 - 4708*n^3 + 6814*n^2 + 20852*n - 40248)/24, n>3. (End)