A227003 Number of primitive Heronian triangles with area 6n.
1, 2, 0, 1, 1, 2, 1, 0, 0, 4, 1, 1, 0, 4, 2, 0, 0, 0, 1, 3, 3, 1, 0, 0, 0, 2, 0, 3, 0, 2, 0, 0, 1, 1, 6, 1, 0, 0, 1, 1, 0, 3, 0, 2, 1, 0, 0, 1, 0, 2, 1, 0, 0, 0, 4, 4, 0, 0, 0, 3, 0, 0, 0, 0, 1, 3, 0, 1, 0, 15, 0, 0, 0, 0, 0, 3, 2, 1, 0, 1, 0, 0, 0, 3, 2, 0, 1, 2, 0, 0
Offset: 1
Keywords
Examples
a(10) = 4 as there are 4 primitive Heronian triangles with area 60. The triples are (10,13,13), (8,15,17), (13,13,24), (6,25,29).
Programs
-
Mathematica
nn=540; lst={}; Do[s=(a+b+c)/2; If[IntegerQ[s]&&GCD[a, b, c]==1, area2=s(s-a)(s-b)(s-c); If[area2>0&&IntegerQ[Sqrt[area2]], AppendTo[lst, Sqrt[area2]]]], {a, 3, nn}, {b, a}, {c, b}]; lst1=Sort@lst/6; Table[Length@Select[lst1, n==# &], {n, 1, nn/6}] (* using T. D. Noe's program A083875 *)
-
PARI
a(n)=sum(z=sqrtint(sqrtint(192*n^2)-1)+1,sqrtint(9*(64*n^2+5)\20), sum(y=z\2+1,z, my(t=(y*z)^2-(12*n)^2,x,g=gcd(y,z)); if(issquare(t,&t), (issquare(y^2+z^2-2*t,&x) && gcd(x,g)==1 && x<=y) + (t && issquare(y^2+z^2+2*t,&x) && gcd(x,g)==1 && x<=y), 0))) \\ Charles R Greathouse IV, Jun 27 2013
Comments