cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A227012 a(n) = floor(M(g(n-1)+1, ..., g(n))), where M = harmonic mean and g(n) = n^3.

Original entry on oeis.org

1, 4, 16, 43, 91, 166, 275, 422, 614, 857, 1158, 1521, 1953, 2460, 3049, 3724, 4492, 5359, 6332, 7415, 8615, 9938, 11391, 12978, 14706, 16581, 18610, 20797, 23149, 25672, 28373, 31256, 34328, 37595, 41064, 44739, 48627, 52734, 57067, 61630, 66430, 71473
Offset: 1

Views

Author

Clark Kimberling, Jul 01 2013

Keywords

Comments

Suppose that f(k) is a sequence such that f(k) > 0 for k >= 1, the limit of f(k) is 0, and the sum of f(k) as k->oo diverges. Let g(n) be a strictly increasing sequence of positive integers, and s(n) = Sum_{k=g(n-1)+1..g(n)} f(k). If f(k) = 1/k, then M(n) = (g(n) - g(n-1))/s(n) is the harmonic mean of g(n-1),...,g(n).
Conjecture: if f(k) = u/(v*k + w), where u,v,w are integers, and g(n) is a polynomial, then the sequence with n-th term m(n) = floor(M(n)) is linearly recurrent. The conjecture extends to these cases, in which a,b,c,d are integers and a > 0:
(1) if g(n) = a*n^2 + b*n + c, the recurrence has order 2, and the first 3 recurrence coefficients for m(n) are 3, -3, 1; these are followed by some nonnegative number of 0's, a property abbreviated below as "(fbz)"; e.g., A002378.
(2) if g(n) has the form (a*n^2 + b*n + c)/2 where a and b are odd, then the recurrence has order 4, and the first 4 coefficients for m(n) are 2, 0-, -1, 2 (fbz); e.g., A080576.
(3) if g(n) = a*n^3 + b*n^2 + c*n + d, the recurrence has order 7, and the first 7 coefficients for m(n) are 3, -3, 1, 1, -3, 3, -1 (fbz); e.g., A227012.

Examples

			a(1) = floor(1/(1/1)) = 1, a(2) = floor(7/(1/2 + 1/3 + ... + 1/8)).
		

Crossrefs

Programs

  • Mathematica
    Clear[g]; g[n_] := g[n] = n^3; a = {1}; Do[AppendTo[a, Floor[(Last[#] - First[#] + 1)/(HarmonicNumber[Last[#]]-HarmonicNumber[First[#] - 1])] &[
       N[{g[k - 1] + 1, g[k]}, 150]]], {k, 2, 100}]; a (* Peter J. C. Moses, Jul 03 2012 *)

Formula

a(n+2) = (1/8)*(27 - (-1)^n - 2*cos(n*Pi/2) + 2*sin(n*Pi/2) + 2*n*(4*n^2 + 18 n + 27)) for n >= 1 (conjectured).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-4) - 3*a(n-5) + 3*a(n-6) - a(n-7) for n >= 10 (conjectured).
G.f.: x*(1 + x + 7*x^2 + 6*x^3 + 5*x^4 + 5*x^5 - 2*x^7 + x^8)/(((x - 1)^4)*(1 + x + x^2 + x^3)) (conjectured).
a(n) = (2*n^3 - 3*n^2 + n + 2)/2 + floor(max(0, n - 3)/4) (conjectured). - Franck Maminirina Ramaharo, Apr 12 2018

A227016 Floor(M(g(n-1)+1,..,g(n))), where M = harmonic mean and g(n) = n(n + 1)(n + 2)/6.

Original entry on oeis.org

1, 2, 7, 14, 27, 45, 69, 101, 141, 191, 252, 323, 408, 506, 618, 746, 890, 1052, 1233, 1432, 1653, 1895, 2159, 2447, 2759, 3097, 3462, 3853, 4274, 4724, 5204, 5716, 6260, 6838, 7451, 8098, 8783, 9505, 10265, 11065, 11905, 12787, 13712, 14679, 15692, 16750
Offset: 1

Views

Author

Clark Kimberling, Jul 01 2013

Keywords

Comments

See A227012.

Examples

			a(1) = floor(1/(1/1)) = 1; a(2) = floor(3/(1/2 + 1/3 + 1/4)) = 2; a(3) = floor(6/(1/5 + 1/6 + ... + 1/10)) = 7.
		

Crossrefs

Programs

  • Mathematica
    z = 200; f[x_] := f[x] = 1/x; g[n_] := g[n] = n (n + 1) (n + 2)/6; s[n_] := s[n] = Sum[f[k], {k, g[n - 1] + 1, g[n]}]; v[n_] := v[n] = (g[n] - g[n - 1])/s[n]; Table[g[n], {n, 1, z}];
    Table[Floor[v[n]], {n, 1, z}]

Formula

a(n) + 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-8) - 3*a(n-9) + 3*a(n-10) - a(n-11) for n > 1 (conjectured).
G.f.: (1 - x + 4*x^2 - 2*x^3 + 4*x^4 - x^5 + x^6 + 2*x^7 - x^8 + 3*x^9 - 3*x^10 + x^11)/((x - 1)^4 (1+x) (1+x^2) (1+x^4)) (conjectured). (G.f. found by Peter J. C. Moses, Jul 01 2013)

A227014 a(n) = floor(M(g(n-1)+1,..,g(n))), where M = harmonic mean and g(n) = n^5.

Original entry on oeis.org

1, 10, 104, 543, 1883, 5102, 11717, 23906, 44626, 77735, 128110, 201769, 305989, 449428, 642243, 896212, 1224852, 1643541, 2169636, 2822595, 3624095, 4598154, 5771249, 7172438, 8833478, 10788947, 13076362, 15736301, 18812521, 22352080
Offset: 1

Views

Author

Clark Kimberling, Jul 01 2013

Keywords

Comments

See A227012. It is conjectured that A227014 is a linear recurrence sequence with signature (5,-10,10,-5,1,...Z...,1,-5,-10,-10,-1,0,0), where ...Z... represents a string of 138 zeros; has been confirmed for a(1), a(2),..., a(150000).

Examples

			a(1) = floor(1/(1/1)) = 1.
a(2) = floor(31/(1/2 + 1/3 + ... + 1/32)) = 10.
		

Crossrefs

Programs

  • Mathematica
    Clear[g]; g[n_] := N[n^5, 100]; a = {1}; Do[AppendTo[a, Floor[(#2 - #1 + 1)/(HarmonicNumber[#2]-HarmonicNumber[#1 - 1])] &[g[k - 1] + 1, g[k]]], {k, 2, 200}]; a (* Peter J. C. Moses, Jul 05 2012 *)
    (* confirm generating function *)
    p = {1, -4, 5, 9, 54, 117, 117, 122, 118, 122, 118, 122, 118, 122,
       118, 122, 118, 122, 118, 122, 118, 122, 118, 122, 118, 122, 118,
       122, 118, 122, 118, 122, 118, 122, 118, 122, 118, 122, 118, 122,
       118, 122, 118, 122, 118, 122, 118, 122, 118, 122, 118, 122, 118,
       122, 118, 122, 118, 122, 118, 122, 118, 122, 118, 122, 118, 122,
       119, 117, 129, 107, 134, 106, 134, 106, 134, 106, 134, 106, 134,
       106, 134, 106, 134, 107, 129, 117, 119, 122, 118, 122, 118, 122,
       118, 122, 118, 122, 118, 122, 118, 122, 118, 122, 118, 122, 118,
       122, 118, 122, 118, 122, 118, 122, 118, 122, 118, 122, 118, 122,
       118, 122, 118, 122, 118, 122, 118, 122, 118, 122, 118, 122, 118,
       122, 118, 122, 118, 122, 118, 122, 118, 122, 118, 122, 118, 122,
       117, 126, 113, 113, 64, 5, 1};
    q = {0, 0, 1, -5, 10, -10, 5, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 5, -10, 10, -5,
        1}; gf = Fold[x #1 + #2 &, 0, p]/Fold[x #1 + #2 &, 0, q]; CoefficientList[Series[Factor[gf], {x, 0, 100}], x] (* Peter J. C. Moses, Jul 08 2012 *)

A227015 a(n) = floor(M(g(n-1)+1, ..., g(n))), where M = harmonic mean and g(n) = n^3 + n^2 + n + 1.

Original entry on oeis.org

2, 8, 26, 60, 117, 203, 324, 487, 696, 958, 1279, 1666, 2123, 2657, 3274, 3981, 4782, 5684, 6693, 7816, 9057, 10423, 11920, 13555, 15332, 17258, 19339, 21582, 23991, 26573, 29334, 32281, 35418, 38752, 42289, 46036, 49997, 54179, 58588, 63231, 68112, 73238
Offset: 1

Views

Author

Clark Kimberling, Jul 01 2013

Keywords

Comments

See A227012.

Crossrefs

Programs

  • Mathematica
    z = 100; f[x_] := f[x] = 1/x; g[n_] := g[n] = n^3 + n^2 + n + 1; s[n_] := s[n] = Sum[f[k], {k, g[n - 1] + 1, g[n]}]; v[n_] := v[n] = (g[n] - g[n - 1])/s[n]; Table[g[n], {n, 1, z}];
    Table[Floor[v[n]], {n, 1, z}]

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-4) - 3*a(n-5) + 3*a(n-6) - a(n-7) for n > 2 (conjectured).
G.f.: x*(2 + 2*x + 8*x^2 + 4*x^3 + 5*x^4 + 4*x^5 - 2*x^6 + 3*x^7 - 3*x^8 + x^9)/((x - 1)^4*(1 + x + x^2 + x^3)) (conjectured).
From Franck Maminirina Ramaharo, Apr 16 2018: (Start)
a(n) = (1/2)*((-1)^(n - 1)! + 2*n^3 - n^2 + n + 3 + 2*floor(max(0, n - 4)/4)) (conjectured).
E.g.f.: (1/24)*exp(-x)*(exp(x)*(6*sin(x) + 6*cos(x) + 4*x^3 - 24) + exp(2*x)*(24*x^3 + 60*x^2 + 30*x + 15) + 3) (conjectured).
(End)
Showing 1-4 of 4 results.