cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227015 a(n) = floor(M(g(n-1)+1, ..., g(n))), where M = harmonic mean and g(n) = n^3 + n^2 + n + 1.

Original entry on oeis.org

2, 8, 26, 60, 117, 203, 324, 487, 696, 958, 1279, 1666, 2123, 2657, 3274, 3981, 4782, 5684, 6693, 7816, 9057, 10423, 11920, 13555, 15332, 17258, 19339, 21582, 23991, 26573, 29334, 32281, 35418, 38752, 42289, 46036, 49997, 54179, 58588, 63231, 68112, 73238
Offset: 1

Views

Author

Clark Kimberling, Jul 01 2013

Keywords

Comments

See A227012.

Crossrefs

Programs

  • Mathematica
    z = 100; f[x_] := f[x] = 1/x; g[n_] := g[n] = n^3 + n^2 + n + 1; s[n_] := s[n] = Sum[f[k], {k, g[n - 1] + 1, g[n]}]; v[n_] := v[n] = (g[n] - g[n - 1])/s[n]; Table[g[n], {n, 1, z}];
    Table[Floor[v[n]], {n, 1, z}]

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-4) - 3*a(n-5) + 3*a(n-6) - a(n-7) for n > 2 (conjectured).
G.f.: x*(2 + 2*x + 8*x^2 + 4*x^3 + 5*x^4 + 4*x^5 - 2*x^6 + 3*x^7 - 3*x^8 + x^9)/((x - 1)^4*(1 + x + x^2 + x^3)) (conjectured).
From Franck Maminirina Ramaharo, Apr 16 2018: (Start)
a(n) = (1/2)*((-1)^(n - 1)! + 2*n^3 - n^2 + n + 3 + 2*floor(max(0, n - 4)/4)) (conjectured).
E.g.f.: (1/24)*exp(-x)*(exp(x)*(6*sin(x) + 6*cos(x) + 4*x^3 - 24) + exp(2*x)*(24*x^3 + 60*x^2 + 30*x + 15) + 3) (conjectured).
(End)