cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227026 Numbers k such that k!/m! is a triangular number for some m < k-1.

Original entry on oeis.org

3, 5, 6, 7, 11, 14, 15, 58, 85, 493, 638, 2871, 16731, 97513, 568345, 3312555, 19306983, 112529341, 655869061, 3822685023, 22280241075, 129858761425, 756872327473, 4411375203411, 25711378892991, 149856898154533, 873430010034205, 5090723162050695
Offset: 1

Views

Author

Alex Ratushnyak, Jun 27 2013

Keywords

Comments

A011900 is a subsequence, except A011900(0)=1.
According to Melissen's comment in A097571, m > k-7.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(3 - 16 x - 8 x^2 - 3 x^3 - x^4 - 20 x^5 - 13 x^6 + 40 x^7 - 230 x^8 + 289 x^9 - 2276 x^10 + 1771 x^11 + 607 x^12 - 145 x^13) / ((1 - x) (1 - 6 x + x^2)), {x, 0, 30}], x] (* Bruno Berselli, Jun 28 2013 *)

Formula

a(n) = 7a(n-1) - 7a(n-2) + a(n-3) for n > 14. - Charles R Greathouse IV, Jun 28 2013
G.f.: x * (3 -16*x -8*x^2 -3*x^3 -x^4 -20*x^5 -13*x^6 +40*x^7 -230*x^8 +289*x^9 -2276*x^10 +1771*x^11 +607*x^12 -145*x^13) / ((1-x)*(1-6*x+x^2)). - Bruno Berselli, Jun 28 2013