A227033 Expansion of (phi(x) / f(-x^4))^2 in powers of x where phi(), f() are Ramanujan theta functions.
1, 4, 4, 0, 6, 16, 8, 0, 17, 40, 28, 0, 38, 96, 56, 0, 84, 204, 124, 0, 172, 400, 232, 0, 325, 760, 448, 0, 594, 1376, 784, 0, 1049, 2404, 1388, 0, 1796, 4096, 2320, 0, 3005, 6808, 3864, 0, 4912, 11072, 6216, 0, 7877, 17688, 9940, 0, 12430, 27792, 15488, 0
Offset: 0
Keywords
Examples
G.f. = 1 + 4*x + 4*x^2 + 6*x^4 + 16*x^5 + 8*x^6 + 17*x^8 + 40*x^9 + 28*x^10 + ... G.f. = 1/q + 4*q^2 + 4*q^5 + 6*q^11 + 16*q^14 + 8*q^17 + 17*q^23 + 40*q^26 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2500 (terms 0..55 from Michael Somos)
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, x] / QPochhammer[ x^4])^2, {x, 0, n}];
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^5 / (eta(x + A)^2 * eta(x^4 + A)^3))^2, n))};
Comments