A227041 Triangle of numerators of harmonic mean of n and m, 1 <= m <= n.
1, 4, 2, 3, 12, 3, 8, 8, 24, 4, 5, 20, 15, 40, 5, 12, 3, 4, 24, 60, 6, 7, 28, 21, 56, 35, 84, 7, 16, 16, 48, 16, 80, 48, 112, 8, 9, 36, 9, 72, 45, 36, 63, 144, 9, 20, 10, 60, 40, 20, 15, 140, 80, 180, 10, 11, 44, 33, 88, 55, 132, 77, 176, 99, 220, 11
Offset: 1
Examples
The triangle of numerators of H(n,m), called a(n,m) begins: n\m 1 2 3 4 5 6 7 8 9 10 11 ... 1: 1 2: 4 2 3: 3 12 3 4: 8 8 24 4 5: 5 20 15 40 5 6: 12 3 4 24 60 6 7: 7 28 21 56 35 84 7 8: 16 16 48 16 80 48 112 8 9: 9 36 9 72 45 36 63 144 9 10: 20 10 60 40 20 15 140 80 180 10 11: 11 44 33 88 55 132 77 176 99 220 11 ... a(4,3) = numerator(24/7) = 24 = 24/gcd(7,18). The triangle of the rationals H(n,m) begins: n\m 1 2 3 4 5 6 7 8 9 1: 1/1 2: 4/3 2/1 3: 3/2 12/5 3/1 4: 8/5 8/3 24/7 4/1 5: 5/3 20/7 15/4 40/9 5/1 6: 12/7 3/1 4/1 24/5 60/11 6/1 7: 7/4 28/9 21/5 56/11 35/6 84/13 7/1 8: 16/9 16/5 48/11 16/3 80/13 48/7 112/15 8/1 9: 9/5 36/11 9/2 72/13 45/7 36/5 63/8 144/17 9/1 ... H(4,3) = 2*4*3/(4 + 3) = 2*4*3/7 = 24/7.
Links
- Eric Weisstein's World of Mathematics, Harmonic Mean.
Formula
a(n,m) = numerator(2*n*m/(n+m)), 1 <= m <= n.
a(n,m) = 2*n*m/gcd(n+m,2*n*m) = 2*n*m/gcd(n+m,2*m^2), n >= 0.
Comments