A225818
Numbers n such that (19^n + 18^n)/37 is prime.
Original entry on oeis.org
5, 223, 311, 54547
Offset: 1
-
Select[ Prime[ Range[1, 100000] ], PrimeQ[ (19^# + 18^#)/37 ]& ]
-
is(n)=ispseudoprime((19^n+18^n)/37) \\ Charles R Greathouse IV, Jun 06 2017
A228558
Numbers k such that (17^k + 4^k)/21 is prime.
Original entry on oeis.org
13, 61, 67, 107, 383, 647, 3571, 37967
Offset: 1
-
Select[ Prime[ Range[1, 100000] ], PrimeQ[ (17^# + 4^#)/21 ]& ]
-
is(n)=ispseudoprime((17^n+4^n)/21) \\ Charles R Greathouse IV, May 22 2017
A224507
Numbers n such that (17^n + 2^n)/19 is prime.
Original entry on oeis.org
5, 7, 113, 193, 211, 701, 797, 907, 4153
Offset: 1
-
Select[Prime[Range[1, 100000]], PrimeQ[(17^# + 2^#)/19]&]
-
is(n)=ispseudoprime((17^n+2^n)/19) \\ Charles R Greathouse IV, Jun 06 2017
A228573
Numbers n such that (17^n + 16^n)/33 is prime.
Original entry on oeis.org
41, 97, 1459, 89227, 91837
Offset: 1
-
Select[ Prime[ Range[1, 100000] ], PrimeQ[ (17^# + 16^#)/33 ]& ]
-
is(n)=ispseudoprime((17^n+16^n)/33) \\ Charles R Greathouse IV, Jun 13 2017
A225397
Numbers n such that (16^n + 5^n)/21 is prime.
Original entry on oeis.org
31, 109, 373, 409, 619, 823, 1531, 6637, 70687
Offset: 1
-
k=16; Do[p=Prime[n]; f=(k^p+5^p)/(k+5); If[ PrimeQ[f], Print[p] ], {n, 1, 9592}]
-
is(n)=ispseudoprime((16^n+5^n)/21) \\ Charles R Greathouse IV, Jun 13 2017
A228130
Numbers n such that (18^n + 5^n)/23 is prime.
Original entry on oeis.org
61, 227, 233, 239, 613, 2213, 7507, 13691
Offset: 1
-
k=18; Do[p=Prime[n]; f=(k^p+5^p)/(k+5); If[ PrimeQ[f], Print[p] ], {n, 1, 9592}]
-
is(n)=ispseudoprime((18^n+5^n)/23) \\ Charles R Greathouse IV, Jun 13 2017
A228225
Numbers n such that (17^n + 3^n)/20 is prime.
Original entry on oeis.org
37, 641, 2521, 7993, 41213
Offset: 1
-
k=17; Do[ p=Prime[n]; f=(3^p+k^p)/(k+3); If[ PrimeQ[f], Print[p]], {n, 1, 9592} ]
-
is(n)=ispseudoprime((17^n+3^n)/20) \\ Charles R Greathouse IV, Jun 13 2017
Showing 1-7 of 7 results.
Comments