cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A225818 Numbers n such that (19^n + 18^n)/37 is prime.

Original entry on oeis.org

5, 223, 311, 54547
Offset: 1

Views

Author

Robert Price, Aug 26 2013

Keywords

Comments

All terms are primes.
a(5) > 10^5. - Robert Price, Oct 03 2013

Crossrefs

Programs

  • Mathematica
    Select[ Prime[ Range[1, 100000] ], PrimeQ[ (19^# + 18^#)/37 ]& ]
  • PARI
    is(n)=ispseudoprime((19^n+18^n)/37) \\ Charles R Greathouse IV, Jun 06 2017

A228558 Numbers k such that (17^k + 4^k)/21 is prime.

Original entry on oeis.org

13, 61, 67, 107, 383, 647, 3571, 37967
Offset: 1

Views

Author

Robert Price, Aug 25 2013

Keywords

Comments

Conjecture: All terms are prime.
a(9) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[ Prime[ Range[1, 100000] ], PrimeQ[ (17^# + 4^#)/21 ]& ]
  • PARI
    is(n)=ispseudoprime((17^n+4^n)/21) \\ Charles R Greathouse IV, May 22 2017

A224507 Numbers n such that (17^n + 2^n)/19 is prime.

Original entry on oeis.org

5, 7, 113, 193, 211, 701, 797, 907, 4153
Offset: 1

Views

Author

Robert Price, Jul 20 2013

Keywords

Comments

All terms are prime.
a(10) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[1, 100000]], PrimeQ[(17^# + 2^#)/19]&]
  • PARI
    is(n)=ispseudoprime((17^n+2^n)/19) \\ Charles R Greathouse IV, Jun 06 2017

A228573 Numbers n such that (17^n + 16^n)/33 is prime.

Original entry on oeis.org

41, 97, 1459, 89227, 91837
Offset: 1

Views

Author

Robert Price, Aug 25 2013

Keywords

Comments

All terms are primes.
a(6) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[ Prime[ Range[1, 100000] ], PrimeQ[ (17^# + 16^#)/33 ]& ]
  • PARI
    is(n)=ispseudoprime((17^n+16^n)/33) \\ Charles R Greathouse IV, Jun 13 2017

A225397 Numbers n such that (16^n + 5^n)/21 is prime.

Original entry on oeis.org

31, 109, 373, 409, 619, 823, 1531, 6637, 70687
Offset: 1

Views

Author

Robert Price, Jul 25 2013

Keywords

Comments

All terms are primes.
a(10) > 10^5.

Crossrefs

Programs

  • Mathematica
    k=16; Do[p=Prime[n]; f=(k^p+5^p)/(k+5); If[ PrimeQ[f], Print[p] ], {n, 1, 9592}]
  • PARI
    is(n)=ispseudoprime((16^n+5^n)/21) \\ Charles R Greathouse IV, Jun 13 2017

A228130 Numbers n such that (18^n + 5^n)/23 is prime.

Original entry on oeis.org

61, 227, 233, 239, 613, 2213, 7507, 13691
Offset: 1

Views

Author

Robert Price, Aug 11 2013

Keywords

Comments

All terms are primes.
a(9) > 10^5.

Crossrefs

Programs

  • Mathematica
    k=18; Do[p=Prime[n]; f=(k^p+5^p)/(k+5); If[ PrimeQ[f], Print[p] ], {n, 1, 9592}]
  • PARI
    is(n)=ispseudoprime((18^n+5^n)/23) \\ Charles R Greathouse IV, Jun 13 2017

A228225 Numbers n such that (17^n + 3^n)/20 is prime.

Original entry on oeis.org

37, 641, 2521, 7993, 41213
Offset: 1

Views

Author

Robert Price, Aug 16 2013

Keywords

Comments

All terms are primes.
a(6) > 10^5.

Crossrefs

Programs

  • Mathematica
    k=17; Do[ p=Prime[n]; f=(3^p+k^p)/(k+3); If[ PrimeQ[f], Print[p]], {n, 1, 9592} ]
  • PARI
    is(n)=ispseudoprime((17^n+3^n)/20) \\ Charles R Greathouse IV, Jun 13 2017
Showing 1-7 of 7 results.