cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227075 A triangle formed like Pascal's triangle, but with 3^n on the borders instead of 1.

Original entry on oeis.org

1, 3, 3, 9, 6, 9, 27, 15, 15, 27, 81, 42, 30, 42, 81, 243, 123, 72, 72, 123, 243, 729, 366, 195, 144, 195, 366, 729, 2187, 1095, 561, 339, 339, 561, 1095, 2187, 6561, 3282, 1656, 900, 678, 900, 1656, 3282, 6561, 19683, 9843, 4938, 2556, 1578, 1578, 2556, 4938
Offset: 0

Views

Author

T. D. Noe, Aug 01 2013

Keywords

Comments

All rows except the zeroth are divisible by 3. Is there a closed-form formula for these numbers, like for binomial coefficients?
Let b=3 and T(n,k) = A(n-k,k) be the associated reading of the symmetric array A by antidiagonals, then A(n,k) = sum_{r=1..n} b^r*A178300(n-r,k) + sum_{c=1..k} b^c*A178300(k-c,n). Similarly with b=4 and b=5 for A227074 and A227076. - R. J. Mathar, Aug 10 2013

Examples

			Triangle:
1,
3, 3,
9, 6, 9,
27, 15, 15, 27,
81, 42, 30, 42, 81,
243, 123, 72, 72, 123, 243,
729, 366, 195, 144, 195, 366, 729,
2187, 1095, 561, 339, 339, 561, 1095, 2187,
6561, 3282, 1656, 900, 678, 900, 1656, 3282, 6561
		

Crossrefs

Cf. A007318 (Pascal's triangle), A228053 ((-1)^n on the borders).
Cf. A051601 (n on the borders), A137688 (2^n on borders).
Cf. A166060 (row sums: 4*3^n - 3*2^n), A227074 (4^n edges), A227076 (5^n edges).

Programs

  • Mathematica
    t = {}; Do[r = {}; Do[If[k == 0 || k == n, m = 3^n, m = t[[n, k]] + t[[n, k + 1]]]; r = AppendTo[r, m], {k, 0, n}]; AppendTo[t, r], {n, 0, 10}]; t = Flatten[t]