cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227155 Number of composites removed in each step of the Sieve of Eratosthenes for 10^7.

Original entry on oeis.org

4999999, 1666666, 666666, 380952, 207791, 159839, 112829, 95016, 74356, 56405, 50949, 41317, 36293, 33780, 30205, 26228, 23123, 21975, 19655, 18249, 17467, 15871, 14876, 13668, 12358, 11710, 11344, 10779, 10451, 9955, 8748, 8398, 7956, 7768, 7181, 7034, 6724
Offset: 1

Views

Author

Eric F. O'Brien, Jul 02 2013

Keywords

Comments

The number of composites <= 10^7 for which the n-th prime is the least prime factor.
The number of multiples of the n-th prime <= 10^7 that do not have any prime < the n-th prime as a factor.
The greatest n for which the n-th prime is a multiple <= 10^7 without a prime factor < n-th prime = primepi(sqrt(10^7)).

Examples

			For n = 2, prime(n) = 3, a(n) = 1666666: 3 divides 10^7 3333333 times.
6 is the common multiple of 2 and 3, thus 10^7 \ 6 multiples of 3 (1666666) have already been eliminated by a(1).
3333333 less 1666666 = 1666667, less 1 because 3 itself is not eliminated.
Thus a(2) = 3333333 - 1666666 - 1 = 1666666.
		

Crossrefs

Formula

a(1) = 10^7 \ 2 - 1.
a(2) = 10^7 \ 3 - 10^7 \ 6 - 1.
a(3) = 10^7 \ 5 - 10^7 \ 10 - 10^7 \ 15 + 10^7 \ 30 - 1.