A227161 Number of n X 2 0,1 arrays indicating 2 X 2 subblocks of some larger (n+1) X 3 binary array having a sum of one or less, with rows and columns of the latter in lexicographically nondecreasing order.
1, 3, 8, 18, 36, 66, 113, 183, 283, 421, 606, 848, 1158, 1548, 2031, 2621, 3333, 4183, 5188, 6366, 7736, 9318, 11133, 13203, 15551, 18201, 21178, 24508, 28218, 32336, 36891, 41913, 47433, 53483, 60096, 67306, 75148, 83658, 92873, 102831, 113571, 125133
Offset: 0
Keywords
Examples
Some solutions for n=4: ..1..0....1..1....1..1....0..0....1..0....1..0....1..0....1..1....1..1....1..1 ..0..0....1..1....1..1....0..0....0..0....1..0....1..0....1..1....1..0....1..0 ..0..1....1..1....1..0....0..0....0..1....1..0....1..0....1..0....0..0....1..0 ..0..0....1..0....0..0....0..1....0..1....1..0....0..0....0..1....0..0....0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 0..210
Crossrefs
Column 2 of A227165.
First differences give A177787. - Alois P. Heinz, Jul 18 2013
Formula
Empirical: a(n) = (1/24)*n^4 + (1/12)*n^3 + (23/24)*n^2 + (11/12)*n + 1.
G.f.: -(1-x+x^2)^2/(x-1)^5. - Alois P. Heinz, Jul 18 2013
Binomial transform of (1 + 2x + 3x^2 + 2x^3 + x^4), i.e., of (1 + x + x^2)^2. - Gary W. Adamson, Jan 23 2017
Extensions
a(0) = 1 added by Alois P. Heinz, Jul 18 2013
Comments