cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A227161 Number of n X 2 0,1 arrays indicating 2 X 2 subblocks of some larger (n+1) X 3 binary array having a sum of one or less, with rows and columns of the latter in lexicographically nondecreasing order.

Original entry on oeis.org

1, 3, 8, 18, 36, 66, 113, 183, 283, 421, 606, 848, 1158, 1548, 2031, 2621, 3333, 4183, 5188, 6366, 7736, 9318, 11133, 13203, 15551, 18201, 21178, 24508, 28218, 32336, 36891, 41913, 47433, 53483, 60096, 67306, 75148, 83658, 92873, 102831, 113571, 125133
Offset: 0

Views

Author

R. H. Hardin, Jul 03 2013

Keywords

Comments

Also number of binary words with 3 1's and at most n 0's that do not contain the substring 101. a(2) = 8: 111, 0111, 1110, 00111, 10011, 11001, 11100, 01110. - Alois P. Heinz, Jul 18 2013

Examples

			Some solutions for n=4:
..1..0....1..1....1..1....0..0....1..0....1..0....1..0....1..1....1..1....1..1
..0..0....1..1....1..1....0..0....0..0....1..0....1..0....1..1....1..0....1..0
..0..1....1..1....1..0....0..0....0..1....1..0....1..0....1..0....0..0....1..0
..0..0....1..0....0..0....0..1....0..1....1..0....0..0....0..1....0..0....0..0
		

Crossrefs

Column 2 of A227165.
First differences give A177787. - Alois P. Heinz, Jul 18 2013

Formula

Empirical: a(n) = (1/24)*n^4 + (1/12)*n^3 + (23/24)*n^2 + (11/12)*n + 1.
G.f.: -(1-x+x^2)^2/(x-1)^5. - Alois P. Heinz, Jul 18 2013
Binomial transform of (1 + 2x + 3x^2 + 2x^3 + x^4), i.e., of (1 + x + x^2)^2. - Gary W. Adamson, Jan 23 2017

Extensions

a(0) = 1 added by Alois P. Heinz, Jul 18 2013

A227162 Number of n X 3 0,1 arrays indicating 2 X 2 subblocks of some larger (n+1) X 4 binary array having a sum of one or less, with rows and columns of the latter in lexicographically nondecreasing order.

Original entry on oeis.org

4, 18, 62, 193, 558, 1507, 3828, 9149, 20609, 43918, 88960, 172130, 319637, 572050, 990413, 1664308, 2722302, 4345275, 6783191, 10375943, 15578976, 22994469, 33408938, 47838207, 67580783, 94280764, 130001506, 177311376, 239383023
Offset: 1

Views

Author

R. H. Hardin, Jul 03 2013

Keywords

Examples

			Some solutions for n=4:
..1..1..1....1..1..1....1..0..0....1..0..0....1..0..0....0..0..0....0..0..0
..1..1..0....1..1..1....0..0..1....0..0..1....0..0..0....0..1..1....0..1..1
..1..1..0....1..1..1....0..0..1....0..0..0....0..0..1....0..1..1....0..1..0
..1..0..0....1..1..0....0..0..0....0..0..0....0..0..1....0..1..0....0..0..1
		

Crossrefs

Column 3 of A227165.

Formula

Empirical: a(n) = (1/90720)*n^9 + (1/8064)*n^8 + (17/30240)*n^7 + (13/960)*n^6 - (131/4320)*n^5 + (181/384)*n^4 - (146161/90720)*n^3 + (171511/10080)*n^2 - (25129/504)*n + 58 for n>3.
Conjectures from Colin Barker, Sep 07 2018: (Start)
G.f.: x*(4 - 22*x + 62*x^2 - 97*x^3 + 98*x^4 - 56*x^5 + 32*x^6 - 70*x^7 + 123*x^8 - 113*x^9 + 55*x^10 - 13*x^11 + x^12) / (1 - x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>13.
(End)

A227163 Number of nX4 0,1 arrays indicating 2X2 subblocks of some larger (n+1)X5 binary array having a sum of one or less, with rows and columns of the latter in lexicographically nondecreasing order.

Original entry on oeis.org

5, 36, 193, 944, 4528, 20336, 85018, 330949, 1200425, 4071133, 12971110, 39024425, 111413038, 303209049, 789787118, 1975994532, 4763501990, 11094968344, 25028901331, 54804425836, 116706101674, 242125356042, 490174804573
Offset: 1

Views

Author

R. H. Hardin Jul 03 2013

Keywords

Comments

Column 4 of A227165

Examples

			Some solutions for n=4
..1..0..0..0....1..1..1..1....1..1..0..0....1..1..1..1....1..1..1..0
..0..0..0..1....1..1..1..0....1..1..0..0....1..0..0..0....1..1..0..1
..0..0..1..1....0..0..0..0....0..0..1..0....0..0..0..0....1..0..0..1
..0..0..0..1....0..0..0..1....0..0..0..0....0..1..1..1....0..0..1..0
		

Formula

Empirical: a(n) = (1/1689515283456000)*n^19 + (1/42682491371520)*n^18 + (47/118562476032000)*n^17 + (289/10461394944000)*n^16 + (479/5230697472000)*n^15 + (7897/2092278988800)*n^14 + (1632263/10461394944000)*n^13 - (908693/603542016000)*n^12 + (896531/18289152000)*n^11 - (23306879/29262643200)*n^10 + (26023484833/1609445376000)*n^9 - (186161720861/804722688000)*n^8 + (2050542947543/871782912000)*n^7 - (5863470751207/392302310400)*n^6 + (78462384223117/1307674368000)*n^5 - (49466529613783/217945728000)*n^4 + (52739410297759/30875644800)*n^3 - (18770426920009/1715313600)*n^2 + (74837531735/2116296)*n - 43518 for n>8

A227164 Number of nX5 0,1 arrays indicating 2X2 subblocks of some larger (n+1)X6 binary array having a sum of one or less, with rows and columns of the latter in lexicographically nondecreasing order.

Original entry on oeis.org

6, 66, 558, 4528, 37012, 283430, 2010569, 13174529, 79606861, 445291143, 2319506105, 11318251449, 52022806997, 226357815317, 936451009248, 3697654793472, 13982230433991, 50782778554993, 177615062917012
Offset: 1

Views

Author

R. H. Hardin Jul 03 2013

Keywords

Comments

Column 5 of A227165

Examples

			Some solutions for n=4
..0..0..0..0..0....1..0..0..0..0....1..0..0..0..0....1..0..0..0..0
..0..0..0..0..0....0..0..0..0..1....0..1..1..0..0....0..0..1..0..0
..0..1..1..1..0....0..1..0..0..0....0..1..0..0..1....0..1..0..0..0
..0..0..0..0..1....0..1..0..0..1....0..1..0..1..0....0..0..0..1..0
		

Formula

Empirical polynomial of degree 39 (see link above)

A227160 Number of n X n 0,1 arrays indicating 2X2 subblocks of some larger (n+1)X(n+1) binary array having a sum of one or less, with rows and columns of the latter in lexicographically nondecreasing order.

Original entry on oeis.org

2, 8, 62, 944, 37012, 3754497, 1009485843, 732609096798
Offset: 1

Views

Author

R. H. Hardin Jul 03 2013

Keywords

Comments

Diagonal of A227165

Examples

			Some solutions for n=4
..1..1..1..0....1..1..0..0....1..1..0..0....1..1..0..0....1..0..0..0
..1..1..0..0....1..0..0..0....1..0..0..1....1..0..0..0....0..1..1..1
..0..0..1..1....1..0..1..1....0..0..1..1....0..0..0..1....0..1..1..1
..0..0..0..1....0..1..1..0....0..1..1..1....0..1..0..0....0..0..1..0
		
Showing 1-5 of 5 results.