A227175 Expansion of (phi(x) / f(-x^4))^4 in powers of x where phi(), f() are Ramanujan theta functions.
1, 8, 24, 32, 28, 80, 192, 192, 134, 408, 864, 800, 568, 1520, 3072, 2752, 1809, 4808, 9456, 8192, 5316, 13616, 26112, 22144, 13990, 35376, 66624, 55584, 34696, 86016, 159744, 131392, 80724, 198256, 363720, 295776, 180068, 436816, 793344, 638976, 384940
Offset: 0
Keywords
Examples
1 + 8*x + 24*x^2 + 32*x^3 + 28*x^4 + 80*x^5 + 192*x^6 + 192*x^7 + 134*x^8 + ... q^-2 + 8*q + 24*q^4 + 32*q^7 + 28*q^10 + 80*q^13 + 192*q^16 + 192*q^19 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_]:= SeriesCoefficient[(EllipticTheta[3,0,q]/QPochhammer[q^4])^4, {q, 0, n}];
-
PARI
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^5 / (eta(x + A)^2 * eta(x^4 + A)^3))^4, n))}
Comments