cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227216 Expansion of f(-q^2, -q^3)^5 / f(-q)^3 in powers of q where f() is a Ramanujan theta function.

Original entry on oeis.org

1, 3, 4, 2, 1, 3, 6, 4, 0, -1, 4, 6, 4, 2, 2, 2, 3, 4, 2, 0, 1, 6, 8, 2, 0, 3, 6, 0, -2, 0, 6, 6, 4, 4, 2, 4, 3, 4, 0, -2, 0, 6, 8, 2, 2, -1, 6, 4, 2, 1, 4, 6, 4, 2, 0, 6, 0, 0, 0, 0, 4, 6, 8, 2, 1, 2, 12, 4, -2, -2, 2, 6, 0, 2, 2, 2, 0, 8, 4, 0, 3, 3, 8, 2
Offset: 0

Views

Author

Michael Somos, Sep 21 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Zagier (2009) refers to Case D corresponding to the Apery numbers (A005258).

Examples

			G.f. = 1 + 3*q + 4*q^2 + 2*q^3 + q^4 + 3*q^5 + 6*q^6 + 4*q^7 - q^9 + ...
		

References

  • D. Zagier, Integral solutions of Apery-like recurrence equations, in: Groups and Symmetries: from Neolithic Scots to John McKay, CRM Proc. Lecture Notes 47, Amer. Math. Soc., Providence, RI, 2009, pp. 349-366.

Crossrefs

The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692, A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(5), 1), 20); A[1] + 3*A[2]; /* Michael Somos, Jun 10 2014 */
  • Mathematica
    a[ n_] := If[ n < 1, Boole[ n == 0], Sum[ Re[(3 - I) {1, I, -I, -1, 0}[[ Mod[ d, 5, 1] ]] ], {d, Divisors @ n}]];
    a[ n_] := SeriesCoefficient[ QPochhammer[ q]^2 / (QPochhammer[ q, q^5] QPochhammer[ q^4, q^5])^5, {q, 0, n}]; (* Michael Somos, Jun 10 2014 *)
  • PARI
    {a(n) = if( n<1, n==0, sumdiv(n, d, real( (3 - I) * [ 0, 1, I, -I, -1][ d%5 + 1])))};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k)^[ 2, -3, 2, 2, -3][k%5 + 1], 1 + x * O(x^n)), n))};
    
  • Sage
    A = ModularForms( Gamma1(5), 1, prec=20) . basis(); A[0] + 3*A[1]; # Michael Somos, Jun 10 2014
    

Formula

Expansion of f(-q)^2 * (f(-q^5) / f(-q, -q^4))^5 = f(-q^2, -q^3)^2 * (f(-q^5) / f(-q, -q^4))^3 in powers of q where f() is a Ramanujan theta function.
Euler transform of period 5 sequence [ 3, -2, -2, 3, -2, ...].
Moebius transform is period 5 sequence [ 3, 1, -1, -3, 0, ...]. - Michael Somos, Jun 10 2014
G.f. = g(t(q)) where g(), t() are the g.f. for A005258 and A078905.
G.f.: (Product_{k>0} (1 - x^k)^2) / (Product_{k>0} (1 - x^(5*k - 1)) * (1 - x^(5*k - 4)))^5.