A227216 Expansion of f(-q^2, -q^3)^5 / f(-q)^3 in powers of q where f() is a Ramanujan theta function.
1, 3, 4, 2, 1, 3, 6, 4, 0, -1, 4, 6, 4, 2, 2, 2, 3, 4, 2, 0, 1, 6, 8, 2, 0, 3, 6, 0, -2, 0, 6, 6, 4, 4, 2, 4, 3, 4, 0, -2, 0, 6, 8, 2, 2, -1, 6, 4, 2, 1, 4, 6, 4, 2, 0, 6, 0, 0, 0, 0, 4, 6, 8, 2, 1, 2, 12, 4, -2, -2, 2, 6, 0, 2, 2, 2, 0, 8, 4, 0, 3, 3, 8, 2
Offset: 0
Keywords
Examples
G.f. = 1 + 3*q + 4*q^2 + 2*q^3 + q^4 + 3*q^5 + 6*q^6 + 4*q^7 - q^9 + ...
References
- D. Zagier, Integral solutions of Apery-like recurrence equations, in: Groups and Symmetries: from Neolithic Scots to John McKay, CRM Proc. Lecture Notes 47, Amer. Math. Soc., Providence, RI, 2009, pp. 349-366.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
- D. Zagier, Integral solutions of Apery-like recurrence equations.
Crossrefs
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692, A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
Programs
-
Magma
A := Basis( ModularForms( Gamma1(5), 1), 20); A[1] + 3*A[2]; /* Michael Somos, Jun 10 2014 */
-
Mathematica
a[ n_] := If[ n < 1, Boole[ n == 0], Sum[ Re[(3 - I) {1, I, -I, -1, 0}[[ Mod[ d, 5, 1] ]] ], {d, Divisors @ n}]]; a[ n_] := SeriesCoefficient[ QPochhammer[ q]^2 / (QPochhammer[ q, q^5] QPochhammer[ q^4, q^5])^5, {q, 0, n}]; (* Michael Somos, Jun 10 2014 *)
-
PARI
{a(n) = if( n<1, n==0, sumdiv(n, d, real( (3 - I) * [ 0, 1, I, -I, -1][ d%5 + 1])))};
-
PARI
{a(n) = if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k)^[ 2, -3, 2, 2, -3][k%5 + 1], 1 + x * O(x^n)), n))};
-
Sage
A = ModularForms( Gamma1(5), 1, prec=20) . basis(); A[0] + 3*A[1]; # Michael Somos, Jun 10 2014
Formula
Expansion of f(-q)^2 * (f(-q^5) / f(-q, -q^4))^5 = f(-q^2, -q^3)^2 * (f(-q^5) / f(-q, -q^4))^3 in powers of q where f() is a Ramanujan theta function.
Euler transform of period 5 sequence [ 3, -2, -2, 3, -2, ...].
Moebius transform is period 5 sequence [ 3, 1, -1, -3, 0, ...]. - Michael Somos, Jun 10 2014
G.f.: (Product_{k>0} (1 - x^k)^2) / (Product_{k>0} (1 - x^(5*k - 1)) * (1 - x^(5*k - 4)))^5.
Comments