A227218 Smallest triangular number ending in n ones.
1, 1711, 105111, 6271111, 664611111, 222222111111, 22222221111111, 2222222211111111, 2517912111111111, 18428299161111111111, 2222222222211111111111, 222222222222111111111111, 22222222222221111111111111, 1090161504430911111111111111
Offset: 1
Examples
a(2) = 1711 because 1711 is the smallest triangular number ending in 2 '1's.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..501 (terms 1..200 from Giovanni Resta)
Programs
-
Mathematica
t = {}; Do[Do[x = n*(n + 1)/2;If[Mod[x, 10^m] == (10^m - 1)/9, AppendTo[t, x]; Break[]], {n, 1, 10^m}], {m, 1, 10}]; t a[n_] := Block[{x, y, s}, s = y /. List@ ToRules[ Reduce[(y+1)* y/2 == x*10^n +(10^n - 1)/9 && y > 0 && x >= 0, {y, x}, Integers] /. C[1] -> 0]; Min[s*(s + 1)/2]]; Array[a, 20] (* Giovanni Resta, Sep 20 2013 *)
-
Python
from sympy import sqrt_mod_iter def A227218(n): k, a = 10**n<<1, (10**n-1)//9<<1 m = (a<<2)+1 return min(b for b in ((d>>1)*((d>>1)+1) for d in sqrt_mod_iter(m, k) if d&1) if b%k==a)>>1 # Chai Wah Wu, May 04 2024
Extensions
a(11)-a(14) from Giovanni Resta, Sep 20 2013
Comments