cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A227218 Smallest triangular number ending in n ones.

Original entry on oeis.org

1, 1711, 105111, 6271111, 664611111, 222222111111, 22222221111111, 2222222211111111, 2517912111111111, 18428299161111111111, 2222222222211111111111, 222222222222111111111111, 22222222222221111111111111, 1090161504430911111111111111
Offset: 1

Views

Author

Shyam Sunder Gupta, Sep 19 2013

Keywords

Comments

If a triangular number ends in like digits then it can only end in 0's, 1's, 5's or 6's.
The sequence is infinite because the sequence of triangular numbers 21, 2211, 222111, 22221111, ... (A319170) is infinite.

Examples

			a(2) = 1711 because 1711 is the smallest triangular number ending in  2 '1's.
		

Crossrefs

Programs

  • Mathematica
    t = {}; Do[Do[x = n*(n + 1)/2;If[Mod[x, 10^m] == (10^m - 1)/9, AppendTo[t, x]; Break[]], {n, 1, 10^m}], {m, 1, 10}]; t
    a[n_] := Block[{x, y, s}, s = y /. List@ ToRules[ Reduce[(y+1)* y/2 == x*10^n +(10^n - 1)/9 && y > 0 && x >= 0, {y, x}, Integers] /. C[1] -> 0]; Min[s*(s + 1)/2]]; Array[a, 20] (* Giovanni Resta, Sep 20 2013 *)
  • Python
    from sympy import sqrt_mod_iter
    def A227218(n):
        k, a = 10**n<<1, (10**n-1)//9<<1
        m = (a<<2)+1
        return min(b for b in ((d>>1)*((d>>1)+1) for d in sqrt_mod_iter(m, k) if d&1) if b%k==a)>>1 # Chai Wah Wu, May 04 2024

Extensions

a(11)-a(14) from Giovanni Resta, Sep 20 2013

A227219 Smallest triangular number ending in at least n 5's.

Original entry on oeis.org

15, 55, 6555, 2235555, 717655555, 13140555555, 9206385555555, 1551745755555555, 103835341555555555, 26427628585555555555, 2262637355455555555555, 8808604932555555555555, 4704913988655555555555555, 4704913988655555555555555, 19391196055786555555555555555
Offset: 1

Views

Author

Shyam Sunder Gupta, Sep 19 2013

Keywords

Comments

If a triangular number ends in like digits then it can only end in 0's, 1's, 5's or 6's.

Examples

			a(3)=6555 because 6555 is the smallest triangular number ending in 3 '5's.
		

Crossrefs

Programs

  • Mathematica
    t = {}; Do[Do[x = n*(n + 1)/2;If[Mod[x, 10^m] == 5*(10^m - 1)/9, AppendTo[t, x]; Break[]], {n, 1, 10^m}], {m, 1, 10}]; t
    a[n_] := Block[{x, y, s}, s = y /. List@ ToRules[ Reduce[(y+1)* y/2 == x*10^n + 5*(10^n - 1)/9 && y > 0 && x >= 0, {y, x}, Integers] /. C[1] -> 0]; Min[s*(s + 1)/2]]; Array[a, 20] (* Giovanni Resta, Sep 20 2013 *)
  • Python
    from sympy import sqrt_mod_iter
    def A227219(n):
        k, a = 10**n<<1, 10*(10**n-1)//9
        m = (a<<2)+1
        return min(b for b in ((d>>1)*((d>>1)+1) for d in sqrt_mod_iter(m, k) if d&1) if b%k==a)>>1 # Chai Wah Wu, May 04 2024

Extensions

a(1) corrected and a(11)-a(15) from Giovanni Resta, Sep 20 2013
Name clarified by Michel Marcus, Sep 05 2019
Showing 1-2 of 2 results.