cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227229 Expansion of (psi(q)^3 / psi(q^3))^2 in powers of q where psi() is a Ramanujan theta function.

Original entry on oeis.org

1, 6, 15, 24, 33, 36, 33, 48, 69, 78, 90, 72, 51, 84, 120, 144, 141, 108, 87, 120, 198, 192, 180, 144, 87, 186, 210, 240, 264, 180, 198, 192, 285, 288, 270, 288, 105, 228, 300, 336, 414, 252, 264, 264, 396, 468, 360, 288, 159, 342, 465, 432, 462, 324, 249
Offset: 0

Views

Author

Michael Somos, Sep 19 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Number 8 and 32 of the 126 eta-quotients listed in Table 1 of Williams 2012. - Michael Somos, Nov 10 2018

Examples

			G.f. = 1 + 6*q + 15*q^2 + 24*q^3 + 33*q^4 + 36*q^5 + 33*q^6 + 48*q^7 + 69*q^8 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(6), 2), 50); A[1] + 6*A[2] + 15*A[3];
  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ q^3] QPochhammer[ q^2]^6 / (QPochhammer[q]^3 QPochhammer[q^6]^2))^2, {q, 0, n}];
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, q]^6 / EllipticTheta[ 2, 0, q^3]^2/16, {q, 0, 2 n}];
    a[ n_] := If[ n < 1, Boole[ n == 0], 3 Sum[ {2, 3/2, 2, 3/2, 2, 0}[[ Mod[d, 6, 1]]] d, {d, Divisors[n]}]];
    a[ n_] := If[ n < 1, Boole[ n == 0], 3 Sum[ {2, 1, 2, 1, 2, -8}[[ Mod[d, 6, 1]]] n/d, {d, Divisors[n]}]];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^6 * eta(x^3 + A) / (eta(x + A)^3 * eta(x^6 + A)^2))^2, n))};
    
  • Sage
    A = ModularForms( Gamma0(6), 2, prec=50) . basis(); A[0] + 6*A[1] + 15*A[2];
    

Formula

Expansion of (a(q) + a(q^2))^2 / 4 in powers of q where a() is a cubic AGM theta function.
Expansion of (b(q^2)^2 / b(q))^2 in powers of q where b() is a cubic AGM theta function.
Expansion of (eta(q^3) * eta(q^2)^6 / (eta(q)^3 * eta(q^6)^2))^2 in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = (27/4) (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A227226.
Convolution square of A107760.
Euler transform of period 6 sequence [6, -6, 4, -6, 6, -4, ...].