cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A227259 Number of n X 2 0,1 arrays indicating 2 X 2 subblocks of some larger (n+1) X 3 binary array having a sum of two or less, with rows and columns of the latter in lexicographically nondecreasing order.

Original entry on oeis.org

3, 9, 23, 50, 96, 168, 274, 423, 625, 891, 1233, 1664, 2198, 2850, 3636, 4573, 5679, 6973, 8475, 10206, 12188, 14444, 16998, 19875, 23101, 26703, 30709, 35148, 40050, 45446, 51368, 57849, 64923, 72625, 80991, 90058, 99864, 110448, 121850, 134111
Offset: 1

Views

Author

R. H. Hardin, Jul 04 2013

Keywords

Comments

Conjecture: a(n) is also the number of length n strings of {0,1,2} with digit sum <= 4 (holds if the empirical formula holds). - Daniel T. Martin, May 24 2023

Examples

			Some solutions for n=4:
  1 0   1 1   1 1   1 1   1 1   1 0   1 1   1 1   0 0   1 1
  1 1   1 0   1 0   1 1   1 1   1 1   1 1   0 1   0 0   1 1
  1 1   0 0   0 1   1 1   0 1   0 1   1 1   0 0   0 0   0 0
  0 1   0 0   0 1   1 0   0 1   0 1   0 0   0 0   0 0   0 0
		

Crossrefs

Column 2 of A227263.
Cf. A105163.

Formula

Empirical: a(n) = (1/24)*n^4 + (5/12)*n^3 + (11/24)*n^2 + (13/12)*n + 1.
G.f.: x*(3 - 6*x + 8*x^2 - 5*x^3 + x^4) / (1 - x)^5. (Conjecture from Colin Barker, Sep 07 2018)

A227260 Number of nX3 0,1 arrays indicating 2X2 subblocks of some larger (n+1)X4 binary array having a sum of two or less, with rows and columns of the latter in lexicographically nondecreasing order.

Original entry on oeis.org

4, 23, 98, 353, 1111, 3136, 8065, 19146, 42385, 88282, 174361, 328741, 595043, 1038979, 1757024, 2887631, 4625512, 7239575, 11095178, 16681436, 24644396, 35826978, 51316667, 72502032, 101139243, 139429856, 190111239, 256561119
Offset: 1

Views

Author

R. H. Hardin Jul 04 2013

Keywords

Comments

Column 3 of A227263

Examples

			Some solutions for n=4
..1..1..0....1..1..1....1..1..0....1..0..0....1..1..0....1..1..1....1..1..0
..1..1..1....1..0..0....1..1..1....0..1..0....0..1..1....1..0..1....1..1..1
..1..1..1....1..1..0....1..1..1....0..1..1....0..1..1....0..1..1....1..1..1
..0..0..0....0..1..0....1..1..1....0..0..1....0..0..1....0..0..1....0..0..1
		

Formula

Empirical: a(n) = (1/90720)*n^9 + (11/40320)*n^8 + (53/30240)*n^7 + (73/2880)*n^6 + (301/4320)*n^5 - (2683/5760)*n^4 + (448811/90720)*n^3 + (1613/1120)*n^2 - (83207/2520)*n + 33 for n>5

A227261 Number of n X 4 0,1 arrays indicating 2 X 2 subblocks of some larger (n+1) X 5 binary array having a sum of two or less, with rows and columns of the latter in lexicographically nondecreasing order.

Original entry on oeis.org

5, 50, 353, 2201, 11932, 57146, 244818, 951917, 3403038, 11297855, 35123154, 102968348, 286360987, 759331583, 1928166887, 4706232142, 11076831313, 25210805133, 55622829033, 119222502647, 248739253915, 506020952898
Offset: 1

Views

Author

R. H. Hardin, Jul 04 2013

Keywords

Comments

Column 4 of A227263.

Examples

			Some solutions for n=4
..1..0..0..0....1..1..1..0....1..1..0..0....1..1..1..0....1..1..1..1
..1..1..1..0....1..1..0..0....1..0..0..0....1..1..1..0....1..1..1..0
..1..1..1..1....1..0..0..0....1..0..1..1....1..1..1..0....0..0..0..0
..1..1..1..1....1..1..0..0....1..0..1..1....1..0..1..1....0..0..0..1
		

Crossrefs

Cf. A227263.

Formula

Empirical: a(n) = (1/1689515283456000)*n^19 + (43/1067062284288000)*n^18 + (1/1097800704000)*n^17 + (1/24908083200)*n^16 + (2161/2615348736000)*n^15 + (7723/10461394944000)*n^14 + (76931/201180672000)*n^13 + (38351/48283361280)*n^12 - (9767641/402361344000)*n^11 + (9434683/6967296000)*n^10 - (3668820107/402361344000)*n^9 - (5124736597/80472268800)*n^8 + (150774753091/72648576000)*n^7 - (42587741190289/3923023104000)*n^6 - (18276563116219/163459296000)*n^5 + (6577553955799/3113510400)*n^4 - (743180805841567/51459408000)*n^3 + (63341814516853/1286485200)*n^2 - (326223749821/4476780)*n + 17722 for n>9.

A227262 Number of nX5 0,1 arrays indicating 2X2 subblocks of some larger (n+1)X6 binary array having a sum of two or less, with rows and columns of the latter in lexicographically nondecreasing order.

Original entry on oeis.org

6, 96, 1111, 11932, 112349, 937865, 6961606, 46364258, 280471755, 1557597103, 8014162577, 38505244717, 173924889597, 742804988619, 3014292672706, 11671178123287, 43274437542484, 154133395370348, 528811622382841
Offset: 1

Views

Author

R. H. Hardin Jul 04 2013

Keywords

Comments

Column 5 of A227263

Examples

			Some solutions for n=4
..1..1..0..0..0....1..1..1..0..0....1..1..1..1..0....1..1..1..1..1
..1..1..0..0..0....1..0..0..0..0....1..0..1..1..1....1..1..0..0..1
..1..1..0..0..0....0..0..0..0..1....0..0..0..0..1....1..1..1..1..0
..1..0..0..1..1....0..0..0..0..0....0..1..1..0..1....0..1..1..1..0
		

Formula

Empirical polynomial of degree 39 (see link above)

A227258 Number of n X n 0,1 arrays indicating 2X2 subblocks of some larger (n+1)X(n+1) binary array having a sum of two or less, with rows and columns of the latter in lexicographically nondecreasing order.

Original entry on oeis.org

2, 9, 98, 2201, 112349, 13855163, 4307345460
Offset: 1

Views

Author

R. H. Hardin Jul 04 2013

Keywords

Comments

Diagonal of A227263

Examples

			Some solutions for n=4
..1..1..1..0....1..1..1..1....1..1..1..1....1..1..1..0....1..1..0..0
..1..0..0..1....1..0..1..1....1..0..1..1....1..0..0..0....1..1..1..0
..0..1..1..1....1..1..0..1....1..1..1..0....1..0..0..1....1..1..1..1
..0..0..1..1....1..1..0..0....0..1..0..0....0..0..0..1....0..1..1..1
		
Showing 1-5 of 5 results.