cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227300 Rising diagonal sums of triangle of Fibonacci polynomials (rows displayed as centered text).

Original entry on oeis.org

1, 2, 2, 3, 7, 11, 16, 28, 48, 77, 126, 211, 349, 573, 947, 1568, 2588, 4271, 7058, 11661, 19256, 31804, 52538, 86779, 143329, 236744, 391046, 645900, 1066850, 1762163, 2910634, 4807590, 7940870, 13116238, 21664568, 35784145, 59105987, 97627533, 161254953, 266350689
Offset: 1

Views

Author

John Molokach, Jul 09 2013

Keywords

Comments

Rising diagonal sums of triangle A011973, taken with rows as centered text.

Examples

			a(1)  = 1;
a(2)  = 1 +  1;
a(3)  = 1 +  1;
a(4)  = 1 +  1 +  1;
a(5)  = 1 +  1 +  3 +  2;
a(6)  = 1 +  1 +  5 +  4;
a(7)  = 1 +  1 +  7 +  6 +  1;
a(8)  = 1 +  1 +  9 +  8 +  6 +  3;
a(9)  = 1 +  1 + 11 + 10 + 15 + 10;
a(10) = 1 +  1 + 13 + 12 + 28 + 21 +  1.
		

Crossrefs

Cf. A011973 (triangle), A000045 (row sums of triangle), A005314 (falling diagonal sums of triangle). Expansion of terms begin with A055624 at a(1) and adds A016813 at a(4), A016754 at a(7), and A100157 at a(10).

Programs

  • Mathematica
    LinearRecurrence[{1, 0, 2, 0, 0, -1}, {1, 2, 2, 3, 7, 11}, 40] (* T. D. Noe, Jul 11 2013 *)
  • PARI
    a(n) = if(n<=1, 1, sum(k=0, floor((n-1)/3), binomial(2*n-2-5*k,k)+binomial(2*n-1-5*k,k)) ); \\ Joerg Arndt, Jul 11 2013

Formula

a(n) = Sum_{k=0..floor((n-1)/3)} (binomial(2*n-2-5*k,k) + binomial(2*n-3-5*k,k)) for n >= 2; a(1)=1. - John Molokach, Jul 11 2013
a(n) = a(n-1) + 2*a(n-3) - a(n-6), starting with {1, 2, 2, 3, 7, 11}. - T. D. Noe, Jul 11 2013
G.f.: x*(1+x-x^3)/(1-x-2*x^3+x^6) - John Molokach, Jul 15 2013
a(n) = Sum_{k=0..floor((2n-1)/3)} binomial(2n-k-2-3*floor(k/2),floor(k/2)). - John Molokach, Jul 29 2013