A227300 Rising diagonal sums of triangle of Fibonacci polynomials (rows displayed as centered text).
1, 2, 2, 3, 7, 11, 16, 28, 48, 77, 126, 211, 349, 573, 947, 1568, 2588, 4271, 7058, 11661, 19256, 31804, 52538, 86779, 143329, 236744, 391046, 645900, 1066850, 1762163, 2910634, 4807590, 7940870, 13116238, 21664568, 35784145, 59105987, 97627533, 161254953, 266350689
Offset: 1
Keywords
Examples
a(1) = 1; a(2) = 1 + 1; a(3) = 1 + 1; a(4) = 1 + 1 + 1; a(5) = 1 + 1 + 3 + 2; a(6) = 1 + 1 + 5 + 4; a(7) = 1 + 1 + 7 + 6 + 1; a(8) = 1 + 1 + 9 + 8 + 6 + 3; a(9) = 1 + 1 + 11 + 10 + 15 + 10; a(10) = 1 + 1 + 13 + 12 + 28 + 21 + 1.
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,2,0,0,-1).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{1, 0, 2, 0, 0, -1}, {1, 2, 2, 3, 7, 11}, 40] (* T. D. Noe, Jul 11 2013 *)
-
PARI
a(n) = if(n<=1, 1, sum(k=0, floor((n-1)/3), binomial(2*n-2-5*k,k)+binomial(2*n-1-5*k,k)) ); \\ Joerg Arndt, Jul 11 2013
Formula
a(n) = Sum_{k=0..floor((n-1)/3)} (binomial(2*n-2-5*k,k) + binomial(2*n-3-5*k,k)) for n >= 2; a(1)=1. - John Molokach, Jul 11 2013
a(n) = a(n-1) + 2*a(n-3) - a(n-6), starting with {1, 2, 2, 3, 7, 11}. - T. D. Noe, Jul 11 2013
G.f.: x*(1+x-x^3)/(1-x-2*x^3+x^6) - John Molokach, Jul 15 2013
a(n) = Sum_{k=0..floor((2n-1)/3)} binomial(2n-k-2-3*floor(k/2),floor(k/2)). - John Molokach, Jul 29 2013
Comments