cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227301 Number of Hamiltonian circuits in a 2n node X 2n node square lattice, reduced for symmetry, where the orbits under the symmetry group of the square, D4, have 8 elements.

Original entry on oeis.org

0, 0, 121, 578937, 58407351059, 134528360800075421, 7015812452559988037073365, 8235314565328229497795808499821534, 216740797236120772990968348272561831275923059, 127557553423846099192878370706037904215158660401579043097
Offset: 1

Views

Author

Keywords

Examples

			When n = 3 there are 121 Hamiltonian circuits in a 6 X 6  square lattice where the orbits under the symmetry group of the square have 8 elements.  One of these circuits is shown below with its 8 distinct transformations under rotation and reflection:
o__o__o__o__o__o    o__o  o__o  o__o    o__o__o__o__o__o
|              |    |  |  |  |  |  |    |              |
o__o__o__o  o__o    o  o  o  o  o  o    o__o__o  o__o__o
         |  |       |  |  |  |  |  |          |  |
o__o__o__o  o__o    o  o__o  o  o  o    o__o__o  o__o__o
|              |    |        |  |  |    |              |
o__o__o  o__o__o    o  o__o  o__o  o    o__o  o__o__o__o
      |  |          |  |  |        |       |  |
o__o__o  o__o__o    o  o  o  o__o  o    o__o  o__o__o__o
|              |    |  |  |  |  |  |    |              |
o__o__o__o__o__o    o__o  o__o  o__o    o__o__o__o__o__o
.
o__o  o__o  o__o    o__o__o__o__o__o    o__o  o__o  o__o
|  |  |  |  |  |    |              |    |  |  |  |  |  |
o  o__o  o  o  o    o__o  o__o__o__o    o  o  o  o__o  o
|        |  |  |       |  |             |  |  |        |
o  o__o  o__o  o    o__o  o__o__o__o    o  o__o  o__o  o
|  |  |        |    |              |    |        |  |  |
o  o  o  o__o  o    o__o__o  o__o__o    o  o__o  o  o  o
|  |  |  |  |  |          |  |          |  |  |  |  |  |
o  o  o  o  o  o    o__o__o  o__o__o    o  o  o  o  o  o
|  |  |  |  |  |    |              |    |  |  |  |  |  |
o__o  o__o  o__o    o__o__o__o__o__o    o__o  o__o  o__o
.
o__o__o__o__o__o    o__o  o__o  o__o
|              |    |  |  |  |  |  |
o__o__o  o__o__o    o  o  o  o  o  o
      |  |          |  |  |  |  |  |
o__o__o  o__o__o    o  o  o  o__o  o
|              |    |  |  |        |
o__o__o__o  o__o    o  o__o  o__o  o
         |  |       |        |  |  |
o__o__o__o  o__o    o  o__o  o  o  o
|              |    |  |  |  |  |  |
o__o__o__o__o__o    o__o  o__o  o__o
		

Crossrefs

Formula

Extensions

a(4) from Giovanni Resta, Jul 11 2013
a(5)-a(10) from Ed Wynn, Feb 05 2014