A227308 Given an equilateral triangular grid with side n consisting of n(n+1)/2 points, a(n) is the maximum number of points that can be painted so that, if any 3 of the painted ones are chosen, they do not form an equilateral triangle with sides parallel to the grid.
1, 2, 4, 6, 8, 12, 14, 18, 22, 26, 30, 34, 39, 44, 49
Offset: 1
Examples
n = 11. At most a(11) = 30 points (X) of 66 can be painted, while 36 (.) must remain unpainted. . X X X . X X . . X X . . . X X . . . . X . X X . X X . . X . X X . X . . . X X . X X . . X . . . . . . . . X . X X X . . . X X X . In this pattern there is no equilateral subtriangle with all vertices = X and sides parallel to the whole triangle.
Links
- Heinrich Ludwig, Illustration of a(2)..a(15)
- Giovanni Resta, Illustration of a(3)-a(14)
Programs
-
Mathematica
ivar[r_, c_] := r*(r-1)/2 + c; a[n_] := Block[{m, qq, nv = n*(n+1)/2, ne}, qq = Union[ Flatten[Table[{ivar[r, c], ivar[r-j, c], ivar[r, c+j]}, {r, 2, n}, {c, r - 1}, {j, Min[r - 1, r - c]}], 2], Flatten[Table[{ivar[r, c], ivar[r + j, c], ivar[r, c - j]}, {r, 2, n}, {c, 2, r}, {j, Min[c - 1, n - r]}], 2]]; ne = Length@qq; m = Table[0, {ne}, {nv}]; Do[m[[i, qq[[i]]]] = 1, {i, ne}]; Total@ Quiet@ LinearProgramming[ Table[-1, {nv}], m, Table[{2, -1}, {ne}], Table[{0, 1}, {nv}], Integers]]; Array[a, 9] (* Giovanni Resta, Sep 19 2013 *)
Extensions
a(12), a(13) from Heinrich Ludwig, Sep 02 2013
a(14) from Giovanni Resta, Sep 19 2013
a(15) from Heinrich Ludwig, Oct 26 2013
Comments