A227321 a(n) is the least r>=3 such that the difference between the nearest r-gonal number >= n and n is an r-gonal number.
3, 3, 3, 3, 4, 3, 3, 3, 4, 3, 3, 5, 3, 8, 3, 3, 4, 5, 3, 11, 3, 3, 3, 5, 4, 3, 10, 3, 3, 11, 3, 17, 4, 3, 5, 3, 3, 7, 14, 3, 4, 15, 3, 23, 3, 3, 5, 11, 4, 3, 5, 5, 3, 19, 3, 3, 3, 8, 5, 21, 3, 32, 14, 3, 4, 3, 3, 15, 3, 5, 5, 25, 3, 38, 7, 3, 6, 3, 3, 13, 4, 3
Offset: 0
Keywords
Links
- Peter J. C. Moses, Table of n, a(n) for n = 0..1999
Crossrefs
Programs
-
Mathematica
rGonalQ[r_,0]:=True; rGonalQ[r_,n_]:=IntegerQ[(Sqrt[((8r-16)n+(r-4)^2)]+r-4)/(2r-4)]; nthrGonal[r_,n_]:=(n (r-2)(n-1))/2+n; nextrGonal[r_,n_]:=nthrGonal[r,Ceiling[(Sqrt[((8r-16)n+(r-4)^2)]+r-4)/(2r-4)]]; (* next r-gonal number greater than or equal to n *) Table[NestWhile[#+1&,3,!rGonalQ[#,nextrGonal[#,n]-n]&],{n,0,99}] (* Peter J. C. Moses, Aug 03 2013 *)
Formula
If n is prime, then n == 1 or 2 mod (a(n)-2). If n >= 13 is the greater of a pair of twin primes (A006512), then a(n) = (n+3)/2. - Vladimir Shevelev, Aug 07 2013
Extensions
More terms from Peter J. C. Moses, Jul 30 2013
Comments