A227341 Triangular array: Number of partitions of the vertex set of a forest of two trees on n vertices into k nonempty independent sets.
1, 1, 1, 0, 2, 1, 0, 2, 4, 1, 0, 2, 10, 7, 1, 0, 2, 22, 31, 11, 1, 0, 2, 46, 115, 75, 16, 1, 0, 2, 94, 391, 415, 155, 22, 1, 0, 2, 190, 1267, 2051, 1190, 287, 29, 1, 0, 2, 382, 3991, 9471, 8001, 2912, 490, 37, 1, 0, 2, 766, 12355, 41875, 49476, 25473, 6342, 786, 46, 1
Offset: 1
Examples
Triangle begins n\k | 1 2 3 4 5 6 7 = = = = = = = = = = = = = 1 | 1 2 | 1 1 3 | 0 2 1 4 | 0 2 4 1 5 | 0 2 10 7 1 6 | 0 2 22 31 11 1 7 | 0 2 46 115 75 16 1 Connection constants: Row 5: 2*x*(x-1) + 10*x*(x-1)*(x-2) + 7*x*(x-1)*(x-2)*(x-3) + x*(x-1)*(x-2)*(x-3)*(x-4) = x^2*(x-1)^3.
Links
- B. Duncan and R. Peele, Bell and Stirling Numbers for Graphs, Journal of Integer Sequences 12 (2009), article 09.7.1.
- D. Galvin and D. T. Thanh, Stirling numbers of forests and cycles, Electr. J. Comb. Vol. 20(1): P73 (2013)
Formula
T(n,k) = Stirling2(n-1,k-1) + Stirling2(n-2,k-1), n,k >= 1.
Recurrence equation: T(n,k) = (k-1)*T(n-1,k) + T(n-1,k-1). Cf. A105794.
k-th column o.g.f.: x^k*(1+x)/((1-x)*(1-2*x)*...*(1-(k-1)*x)).
For n >= 2, sum {k = 0..n} T(n,k)*x_(k) = x^2*(x-1)^(n-2), where x_(k) = x*(x-1)*...*(x-k+1) is the falling factorial.
Comments