A227342 Expansion of (1 - t)*(1 + t)^x.
1, -1, 1, 0, -3, 1, 0, 5, -6, 1, 0, -14, 23, -10, 1, 0, 54, -105, 65, -15, 1, 0, -264, 574, -435, 145, -21, 1, 0, 1560, -3682, 3199, -1330, 280, -28, 1, 0, -10800, 27180, -26124, 12649, -3360, 490, -36, 1, 0, 85680, -227196, 236312, -128205, 40089, -7434, 798, -45, 1
Offset: 0
Examples
Triangle begins: n\k| 0 1 2 3 4 5 6 7 8 9 ===|================================================================== 0 | 1 1 | -1, 1; 2 | 0, -3, 1; 3 | 0, 5, -6, 1; 4 | 0, -14, 23, -10, 1; 5 | 0, 54, -105, 65, -15, 1; 6 | 0, -264, 574, -435, 145, -21, 1; 7 | 0, 1560, -3682, 3199, -1330, 280, -28, 1; 8 | 0, -10800, 27180, -26124, 12649, -3360, 490, -36, 1; 9 | 0, 85680, -227196, 236312, -128205, 40089, -7434, 798, -45, 1; ... Connection constants. Row 4 = [0, -14 ,23, -10, 1]: -14*x + 23*x^2 - 10*x^3 + x^4 = x*(x-1)*(x-2)*(x-7) = x_[4].
References
- S. Roman, The umbral calculus, Pure and Applied Mathematics 111, Academic Press Inc., New York, 1984. Reprinted by Dover in 2005.
Links
- Eric Weisstein's World of Mathematics, Sheffer Sequence
Formula
T(n,k) = Stirling1(n,k) - n*Stirling1(n-1,k).
E.g.f.: (1 - t)*(1 + t)^x = 1 + (-1 + x)*t + (-3*x + x^2)*t^2/2! + (5*x - 6*x^2 + x^3)*t^3/3! + ....
E.g.f. for column k: (1/k!)*(1 - t)*(log(1 + t))^k.
The row polynomials R(n,x) satisfy the Sheffer identity R(n,x + y) = Sum_{k = 0..n} binomial(n,k)*y_(k)*R(n-k,x), where y_(k) is the falling factorial. As a particular case we have the identity R(n,x + 1) - R(n,x) = n*R(n-1,x) for n >= 1.
Comments