cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A227353 Number of lattice points in the closed region bounded by the graphs of y = 3*x/5, x = n, and y = 0, excluding points on the x-axis.

Original entry on oeis.org

0, 1, 2, 4, 7, 10, 14, 18, 23, 29, 35, 42, 49, 57, 66, 75, 85, 95, 106, 118, 130, 143, 156, 170, 185, 200, 216, 232, 249, 267, 285, 304, 323, 343, 364, 385, 407, 429, 452, 476, 500, 525, 550, 576, 603, 630, 658, 686, 715, 745, 775, 806, 837, 869, 902, 935
Offset: 1

Views

Author

Clark Kimberling, Jul 08 2013

Keywords

Comments

See A227347.

Examples

			a(1) = floor(3/5) = 0; a(2) = floor(6/5) = 1; a(3) = a(2) + floor(9/5) = 2; a(4) = a(3) + floor(12/5) = 4.
		

Crossrefs

Cf. A057355 (first differences).

Programs

  • Mathematica
    z = 150; r = 3/5; k = 1; a[n_] := Sum[Floor[r*x^k], {x, 1, n}]; t = Table[a[n], {n, 1, z}]
  • PARI
    a(n) = (3*n^2-n)\10; \\ Kevin Ryde, Mar 15 2022
    
  • Python
    a = lambda n: n*(3*n-1)//10 # Gennady Eremin, Mar 20 2022

Formula

a(n) = 2*a(n-1) - a(n-2) + a(n-5) - 2*a(n-6) + a(n-7).
G.f.: (x*(1 + x^2 + x^3))/((1 - x)^3*(1 + x + x^2 + x^3 + x^4)).
According to Wolfram Alpha, a(n) = floor(Re(E(n^2|Pi))) where E(x|m) is the incomplete elliptic integral of the second kind. - Kritsada Moomuang, Jan 28 2022
a(n) = a(n-1) + floor(3*n/5), n > 1. - Gennady Eremin, Mar 15 2022
a(n) = floor(n*(3*n-1)/10). - Kevin Ryde, Mar 15 2022

A386851 a(n) = floor(5*n^2/6).

Original entry on oeis.org

0, 3, 7, 13, 20, 30, 40, 53, 67, 83, 100, 120, 140, 163, 187, 213, 240, 270, 300, 333, 367, 403, 440, 480, 520, 563, 607, 653, 700, 750, 800, 853, 907, 963, 1020, 1080, 1140, 1203, 1267, 1333, 1400, 1470, 1540, 1613, 1687, 1763, 1840, 1920, 2000, 2083, 2167, 2253
Offset: 1

Views

Author

Chai Wah Wu, Aug 05 2025

Keywords

Crossrefs

Cf. A227347 (partial sums), A330451.

Programs

  • Mathematica
    a[n_]:=Floor[5n^2/6];Array[a,52] (* or *)  Rest[CoefficientList[Series[-x^2*(3*x^2 + 4*x + 3)/((x - 1)^3*(x + 1)*(x^2 + x + 1)),{x,0,52}],x]] (* or *) LinearRecurrence[{1,1,0,-1,-1,1},{0, 3, 7, 13, 20, 30, 40},52] (* James C. McMahon, Aug 12 2025 *)
  • Python
    def A386851(n): return 5*n**2//6

Formula

a(n) = A227347(n)-A227347(n-1) for n>1.
a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6) for n > 6.
a(2n) = A330451(n).
G.f.: -x^2*(3*x^2 + 4*x + 3)/((x - 1)^3*(x + 1)*(x^2 + x + 1)).
Showing 1-2 of 2 results.