cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227357 de Bruijn's S(6,n).

Original entry on oeis.org

1, 62, 38466, 41312060, 56930297410, 90519385516812, 157933807781230404, 294111627143303836152, 574788682882785699423810, 1165869740380160987511514460, 2435635082278794046304453801716, 5211959633483650233198112526032152, 11377217758058088192513643732271022916
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 09 2013

Keywords

Comments

Generally, S(s,n) is asymptotic to (2*cos(Pi/(2*s)))^(2*n*s+s-1) *2^(2-s)*(Pi*n)^((1-s)/2)*s^(-1/2).

References

  • N. G. de Bruijn, Asymptotic Methods in Analysis, North-Holland Publishing Co., 1958. See chapter 4.7, p.72-75.

Crossrefs

Cf. A000984 (s=2), A006480 (s=3), A050983 (s=4), A050984 (s=5).

Programs

  • Maple
    a:= n->add((-1)^(k+n)*binomial(2*n,k)^6, k=0..2*n):
    seq(a(n), n=0..15);  # Alois P. Heinz, Jul 17 2013
  • Mathematica
    Table[Sum[(-1)^(k+n)*Binomial[2*n,k]^6, {k, 0, 2*n}], {n, 0, 20}]

Formula

a(n) ~ (1+sqrt(3))^(12*n+5)/(sqrt(3)*2^(6*n+7)*(Pi*n)^(5/2)).
Recurrence: (n-1)*n^5*(2*n - 1)^3*(78037440*n^10 - 1398170800*n^9 + 11197027400*n^8 - 52776179300*n^7 + 162127296682*n^6 - 339174893304*n^5 + 489377694958*n^4 - 480894941069*n^3 + 308044053231*n^2 - 116166558141*n + 19587964597)*a(n) = (n-1)*(1726812472320*n^18 - 37845973351680*n^17 + 383495168176640*n^16 - 2385128962478080*n^15 + 10193794229981856*n^14 - 31763778392601840*n^13 + 74716717106494000*n^12 - 135540917163836728*n^11 + 192070195278504510*n^10 - 214041209444090466*n^9 + 187905640039584992*n^8 - 129585587008626217*n^7 + 69664459655905576*n^6 - 28800662692839270*n^5 + 8959012339689510*n^4 - 2025094914623067*n^3 + 313623932421492*n^2 - 29741972276520*n + 1302044058000)*a(n-1) - (2*n - 3)*(53979745847040*n^18 - 1291015588175040*n^17 + 14334324120939680*n^16 - 98074075137527840*n^15 + 462828677276119232*n^14 - 1597795252577443036*n^13 + 4175964673926667106*n^12 - 8435559969344133552*n^11 + 13328633341117570446*n^10 - 16565740193886252205*n^9 + 16202242092204003209*n^8 - 12416056458421188647*n^7 + 7385327565692140915*n^6 - 3358099721685530886*n^5 + 1140333781667693872*n^4 - 278997802954150098*n^3 + 46356206084424824*n^2 - 4676191704077040*n + 216042816276000)*a(n-2) + 8*(n-2)^3*(2*n - 5)^5*(2*n - 3)*(78037440*n^10 - 617796400*n^9 + 2125175000*n^8 - 4169616100*n^7 + 5152323982*n^6 - 4181430032*n^5 + 2256662768*n^4 - 801756137*n^3 + 180454862*n^2 - 23380182*n + 1331694)*a(n-3). - Vaclav Kotesovec, Sep 27 2016