A227360 G.f.: 1/(1 - x*(1-x^3)/(1 - x^2*(1-x^4)/(1 - x^3*(1-x^5)/(1 - x^4*(1-x^6)/(1 - ...))))), a continued fraction.
1, 1, 1, 2, 2, 3, 5, 6, 10, 14, 21, 32, 46, 71, 104, 157, 235, 350, 527, 785, 1179, 1763, 2639, 3954, 5915, 8861, 13262, 19857, 29731, 44507, 66640, 99765, 149366, 223625, 334795, 501247, 750434, 1123518, 1682076, 2518314, 3770306, 5644701, 8450977, 12652376
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 2*x^4 + 3*x^5 + 5*x^6 + 6*x^7 + 10*x^8 +...
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
nMax = 44; col[m_ /; 0 <= m <= nMax] := 1/(1 + ContinuedFractionK[-x^k (1 - x^(m + k)), 1, {k, 1, Ceiling[nMax/2]}]) + O[x]^(2 nMax) // CoefficientList[#, x] &; A227360 = col[2][[1 ;; nMax]] (* Jean-François Alcover, Nov 03 2016 *)
-
PARI
{a(n)=local(CF); CF=1+x; for(k=0, n, CF=1/(1 - x^(n-k+1)*(1 - x^(n-k+3))*CF+x*O(x^n))); polcoeff(CF, n)} for(n=0,50,print1(a(n),", "))
Comments