A227366 a(0)=1, a(n+1) = a(n) + a(n-1)*a(n-2) + a(n-3)*a(n-4)*a(n-5) + a(n-6)*a(n-7)*a(n-8)*a(n-9) + ... + ...*a(0).
1, 1, 2, 3, 6, 13, 33, 118, 584, 4714, 76206, 2879841, 364389490, 220150411628, 1049813737275512, 80222580570107370160, 231117086585854944888597249, 84218767584329653007205530276477742, 18540809099930664963747242025045529905738135516
Offset: 0
Keywords
Examples
a(1) = a(0) = 1 a(2) = a(1) + a(0) = 2 a(3) = a(2) + a(1)*a(0) = 3 a(4) = a(3) + a(2)*a(1) + a(0) = 3 + 2 + 1 = 6 a(5) = a(4) + a(3)*a(2) + a(1)*a(0) = 6 + 3*2 + 1 = 13
Programs
-
Python
a = [1]*99 for n in range(20): sum = i = 0 k = 1 while i<=n: product = 1 for x in range(k): product *= a[n-i] i += 1 if i>n: break sum += product k += 1 a[n+1] = sum print(str(a[n]),end=',')