cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A227364 a(n) = 1 + 2*3 + 4*5*6 + 7*8*9*10 + ... + ...*n (see Example lines).

Original entry on oeis.org

0, 1, 3, 7, 11, 27, 127, 134, 183, 631, 5167, 5178, 5299, 6883, 29191, 365527, 365543, 365799, 370423, 458551, 2226007, 39435607, 39435629, 39436113, 39447751, 39739207, 47329207, 252562807, 6006997207, 6006997236, 6006998077, 6007024177, 6007860247, 6035477527, 6975328087
Offset: 0

Views

Author

Alex Ratushnyak, Jul 07 2013

Keywords

Examples

			a(5) = 1 + 2*3 + 4*5 = 27;
a(6) = 1 + 2*3 + 4*5*6 = 127;
a(7) = 1 + 2*3 + 4*5*6 + 7 = 134.
		

Crossrefs

Programs

  • Python
    for n in range(55):
      sum = 0
      i = k = 1
      while i<=n:
        product = 1
        for x in range(k):
          product *= i
          i += 1
          if i>n: break
        sum += product
        k += 1
      print(str(sum), end=',')

A227363 a(n) = n + (n-1)*(n-2) + (n-3)*(n-4)*(n-5) + (n-6)*(n-7)*(n-8)*(n-9) + ... + ...*(n-n).

Original entry on oeis.org

0, 1, 2, 5, 10, 17, 32, 61, 110, 185, 316, 557, 986, 1705, 2840, 4661, 7702, 12881, 21620, 35965, 58706, 94217, 150016, 239045, 382670, 614401, 984332, 1564301, 2458810, 3826745, 5918936, 9136597, 14115686, 21842225, 33803620, 52181021, 80128082, 122221801, 185211440
Offset: 0

Views

Author

Alex Ratushnyak, Jul 07 2013

Keywords

Comments

From a question by Jonathan Vos Post dated Jul 09 2013, the indices of a(n) which are prime begin: 2, 3, 5, 7, 11, 41, 111, 205, 211, 215, 341, 345, 395, 581, 585, 1221, ..., . - Robert G. Wilson v, Jul 10 2013

Examples

			a(2) = 2 + 1*0 = 2.
a(3) = 3 + 2*1 = 5.
a(9) = 9 + 8*7 + 6*5*4 + 3*2*1*0 = 9 + 56 + 120 = 185.
a(11) = 11 + 10*9 + 8*7*6 + 5*4*3*2 = 557.
a(18) = 18 + 17*16 + 15*14*13 + 12*11*10*9 + 8*7*6*5*4 = 21620.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Sum[ Product[ n - k (k - 1)/2 - i + 1, {i, k}], {k, Sqrt[ 2n]}]; Array[f, 39, 0] (* Robert G. Wilson v, Jul 10 2013 *)
  • PARI
    a(n)=sum(k=1,sqrtint(2*n)+1,prod(i=1,k,max(n-k*(k-1)/2-i+1,0))) \\ Charles R Greathouse IV, Jul 09 2013
  • Python
    for n in range(55):
      sum = i = 0
      k = 1
      while i<=n:
        product = 1
        for x in range(k):
          product *= n-i
          i += 1
          if i>n: break
        sum += product
        k += 1
      print(str(sum), end=',')
    

A227365 a(n) = 0 + 1*2 + 3*4*5 + 6*7*8*9 + ... + ...*n.

Original entry on oeis.org

0, 1, 2, 5, 14, 62, 68, 104, 398, 3086, 3096, 3196, 4406, 20246, 243326, 243341, 243566, 247406, 316766, 1638686, 28150526, 28150547, 28150988, 28161152, 28405550, 34526126, 193916126, 4503821726, 4503821754, 4503822538, 4503846086, 4504576886, 4527986846, 5301270686
Offset: 0

Views

Author

Alex Ratushnyak, Jul 07 2013

Keywords

Examples

			a(4) = 0 + 1*2 + 3*4 = 14.
a(5) = 0 + 1*2 + 3*4*5 = 62.
a(6) = 0 + 1*2 + 3*4*5 + 6 = 68.
		

Crossrefs

Programs

  • Python
    for n in range(55):
      sum = i = 0
      k = 1
      while i<=n:
        product = 1
        for x in range(k):
          product *= i
          i += 1
          if i>n: break
        sum += product
        k += 1
      print(str(sum), end=',')

A227367 a(0)=1, a(n+1) = a(0) + a(1)*a(2) + a(3)*a(4)*a(5) + a(6)*a(7)*a(8)*a(9) + ... + ...*a(n).

Original entry on oeis.org

1, 1, 2, 3, 6, 21, 381, 762, 290703, 84397476747, 7122934049104967061783, 14245868098209934123566, 101472378935797762635619628499635817245339961, 10296643686890133479148472187437767614663729545766251948487237380959682684821520304732841
Offset: 0

Views

Author

Alex Ratushnyak, Jul 08 2013

Keywords

Examples

			a(1) = a(0) = 1
a(2) = a(0) + a(1) = 2
a(3) = a(0) + a(1)*a(2) = 3
a(4) = a(0) + a(1)*a(2) + a(3) = 1 + 2 + 3 = 6
a(5) = a(0) + a(1)*a(2) + a(3)*a(4) = 1 + 2 + 18 = 21
a(6) = a(0) + a(1)*a(2) + a(3)*a(4)*a(5) = 1 + 2 + 18*21 = 381
		

Crossrefs

Programs

  • Python
    a = [1]*99
    for n in range(20):
      sum = i = 0
      k = 1
      while i<=n:
        product = 1
        for x in range(k):
          product *= a[i]
          i += 1
          if i>n: break
        sum += product
        k += 1
      a[n+1] = sum
      print(str(a[n]),end=',')
Showing 1-4 of 4 results.