A227368 a(n) = Index k where A227183(k) for the first time gets value n; the runlength binary code for minimally runlength-encoded unordered partition of size n.
0, 1, 2, 5, 4, 9, 8, 17, 16, 23, 32, 39, 40, 71, 72, 87, 80, 151, 144, 167, 160, 295, 288, 327, 320, 351, 576, 607, 640, 671, 672, 1183, 1184, 1311, 1312, 1375, 1344, 2399, 2368, 2655, 2624, 2719, 2688, 4767, 4736, 5279, 5248, 5407, 5376, 5503, 9472, 9599, 10496
Offset: 0
Keywords
Examples
n a(n) binary corresponding partition sum = n (cf. A227183 for details) 0 0 0 (0) 0 1 1 1 (1) 1 2 2 10 (1 + 1) 2 3 5 101 (1 + 1 + 1) 3 4 4 100 (2 + 2) 4 5 9 1001 (1 + 2 + 2) 5 6 8 1000 (3 + 3) 6 7 17 10001 (1 + 3 + 3) 7 8 16 10000 (4 + 4) 8 9 23 10111 (3 + 3 + 3) 9 10 32 100000 (5 + 5) 10 11 39 100111 (3 + 4 + 4) 11 12 40 101000 (3 + 3 + 3 + 3) 12 13 71 1000111 (3 + 5 + 5) 13 14 72 1001000 (3 + 3 + 4 + 4) 14 15 87 1010111 (3 + 3 + 3 + 3 + 3) 15 16 80 1010000 (4 + 4 + 4 + 4) 16 17 151 10010111 (3 + 3 + 3 + 4 + 4) 17 18 144 10010000 (4 + 4 + 5 + 5) 18 19 167 10100111 (3 + 4 + 4 + 4 + 4) 19 20 160 10100000 (5 + 5 + 5 + 5) 20 a(5) = 9, because 5 occurs for the first time in A227183 as A227183(9). Note that for 20, there is for example also a code 175, "10101111" in binary, which results a partition (4 + 4 + 4 + 4 + 4) (= 20), but as 160 < 175, and there are no other partitions of 20 which would result even smaller code number, 160 is the winner (the minimal code), and thus a(20)=160. A227761 gives the maximum difference between successive parts that occurs in these partitions.
Comments