cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A227373 Antidiagonal sums of triangle A227372.

Original entry on oeis.org

1, 1, 2, 6, 18, 59, 199, 693, 2465, 8937, 32880, 122513, 461331, 1753037, 6713758, 25888515, 100427611, 391657635, 1534674930, 6039078032, 23855475724, 94561195899, 376019415794, 1499554893338, 5996061250461, 24034238674758, 96554979145357, 388711331661818, 1567919554600690
Offset: 0

Views

Author

Paul D. Hanna, Jul 10 2013

Keywords

Comments

The g.f. of triangle A227372 satisfies: G(x,q) = 1 + x*G(q*x,q)*G(x,q)^2.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 18*x^4 + 59*x^5 + 199*x^6 + 693*x^7 +...
and equals a series involving row polynomials of triangle A227372:
A(x) = 1 + x*(1) + x^2*(2 + x) + x^3*(5 + 4*x + 2*x^2 + x^3)
+ x^4*(14 + 15*x + 10*x^2 + 9*x^3 + 4*x^4 + 2*x^5 + x^6)
+ x^5*(42 + 56*x + 45*x^2 + 43*x^3 + 34*x^4 + 23*x^5 + 14*x^6 + 9*x^7 + 4*x^8 + 2*x^9 + x^10) +...
RELATED SERIES.
G.f. A(x) = 1 + x*A(x)^2*B(x), where
B(x) = 1 + x^2 + 2*x^4 + x^5 + 5*x^6 + 4*x^7 + 16*x^8 + 16*x^9 + 52*x^10 +...
and B(x) = 1 + x^2*B(x)^2*C(x), where
C(x) = 1 + x^3 + 2*x^6 + x^7 + 5*x^9 + 4*x^10 + 2*x^11 + 15*x^12 +...
and C(x) = 1 + x^3*C(x)^2*D(x), where
D(x) = 1 + x^4 + 2*x^8 + x^9 + 5*x^12 + 4*x^13 + 2*x^14 + x^15 + 14*x^16 +...
and D(x) = 1 + x^4*D(x)^2*E(x), where
E(x) = 1 + x^5 + 2*x^10 + x^11 + 5*x^15 + 4*x^16 + 2*x^17 + x^18 + 14*x^20 +...
etc.
		

Crossrefs

Programs

  • PARI
    /* From g.f. of A227372: G(x,q) = 1 + x*G(q*x,q)*G(x,q)^2: */
    {a(n)=local(G=1);for(i=1,n,G=1+x*subst(G,x,q*x)*G^2 +x*O(x^n));polcoeff(sum(m=0,n,q^m*polcoeff(G,m,x))+q*O(q^n),n,q)}
    for(n=0,40,print1(a(n),", "))

Formula

G.f. A(x) satisfies: A(x) = 1 + x*A(x)^2*B(x), where B(x) = 1 + x^2*B(x)^2*C(x), C(x) = 1 + x^3*C(x)^2*D(x), D(x) = 1 + x^4*D(x)^2*E(x), etc.

A227377 Limit of rows, when read in reverse, of triangle A227372.

Original entry on oeis.org

1, 2, 4, 9, 14, 27, 46, 71, 113, 185, 280, 409, 614, 899, 1325, 1892, 2639, 3717, 5216, 7221, 9990, 13600, 18315, 24705, 33190, 44338, 58998, 78151, 102492, 133963, 174840, 227180, 294463, 380480, 489606, 628157, 801699, 1019864, 1295760, 1641900, 2074523
Offset: 0

Views

Author

Paul D. Hanna, Jul 10 2013

Keywords

Comments

The g.f. of triangle A227372 satisfies: G(x,q) = 1 + x*G(q*x,q)*G(x,q)^2.
What is the generating function for this sequence?

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 18*x^4 + 59*x^5 + 199*x^6 + 693*x^7 +...
		

Crossrefs

Programs

  • PARI
    /* G.f. of A227372: G(x,q) = 1 + x*G(q*x,q)*G(x,q)^2: */
    {A227372(n,k)=local(G=1);for(i=1,n,G=1+x*subst(G,x,q*x)*G^2 +x*O(x^n));polcoeff(polcoeff(G,n,x),k,q)}
    {a(n)=A227372(n+1, n*(n-1)/2)}
    for(n=0,40,print1(a(n),", "))
Showing 1-2 of 2 results.