A227374 G.f.: 1/(1 - x*(1-x^5)/(1 - x^2*(1-x^6)/(1 - x^3*(1-x^7)/(1 - x^4*(1-x^8)/(1 - x^5*(1-x^9)/(1 - ...)))))), a continued fraction.
1, 1, 1, 2, 3, 5, 8, 13, 22, 36, 61, 101, 169, 283, 473, 793, 1325, 2220, 3715, 6220, 10413, 17431, 29185, 48856, 81797, 136937, 229257, 383813, 642564, 1075762, 1800995, 3015171, 5047886, 8451001, 14148368, 23686705, 39655467, 66389797, 111147511, 186079299, 311527531, 521548600
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 5*x^5 + 8*x^6 + 13*x^7 + 22*x^8 +...
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
nMax = 42; col[m_ /; 0 <= m <= nMax] := 1/(1 + ContinuedFractionK[-x^k (1 - x^(m + k)), 1, {k, 1, Ceiling[nMax/2]}]) + O[x]^(2 nMax) // CoefficientList[#, x]&; A227374 = col[4][[1 ;; nMax]] (* Jean-François Alcover, Nov 03 2016 *)
-
PARI
{a(n)=local(CF); CF=1+x; for(k=0, n, CF=1/(1 - x^(n-k+1)*(1 - x^(n-k+5))*CF+x*O(x^n))); polcoeff(CF, n)} for(n=0,50,print1(a(n),", "))
Formula
G.f.: T(0), where T(k) = 1 - x^(k+1)*(1-x^(k+5))/(x^(k+1)*(1-x^(k+5)) - 1/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 18 2013
Comments