A227421 Primes p such that 2*p = prime(m) + prime(m + k) for some k > 2, where prime(m) and p or p and prime(m + k) are consecutive primes.
7, 23, 37, 47, 67, 73, 233, 277, 353, 479, 613, 619, 631, 647, 809, 1009, 1069, 1097, 1283, 1297, 1433, 1453, 1459, 1471, 1493, 1499, 1607, 1613, 1663, 1709, 1721, 1759, 1783, 1789, 1867, 1889, 1901, 1931, 1993, 2099, 2137, 2161, 2377, 2383, 2411, 2521, 2621
Offset: 1
Keywords
Examples
In the ordered set of primes we have ...,607, 613, 617, 619, 631,... and (607 + 631)/2 = 619, where 619 and 631 are consecutive primes, therefore 619 is in this sequence.
Crossrefs
Cf. A098029.
Programs
-
Maple
for i from 2 to 400 do p := ithprime(i) ; pn := prevprime(p) ; pk := 2*p-pn ; if isprime(pk) and pk > nextprime(p) then printf("%d,",p) ; else pk := nextprime(p) ; pn := 2*p-pk ; if isprime(pn) and pn < prevprime(p) then printf("%d,",p) ; end if; end if; end do: # R. J. Mathar, Jul 20 2013
Extensions
Corrected by R. J. Mathar, Jul 20 2013
Comments