A227450 Triangular array read by rows. T(n,k) = A008277(n,k)*2^k; n >= 1, 1 <= k <= n.
2, 2, 4, 2, 12, 8, 2, 28, 48, 16, 2, 60, 200, 160, 32, 2, 124, 720, 1040, 480, 64, 2, 252, 2408, 5600, 4480, 1344, 128, 2, 508, 7728, 27216, 33600, 17024, 3584, 256, 2, 1020, 24200, 124320, 222432, 169344, 59136, 9216, 512, 2, 2044, 74640, 545680, 1360800, 1460928, 752640, 192000, 23040, 1024
Offset: 1
Examples
2, 2, 4, 2, 12, 8, 2, 28, 48, 16, 2, 60, 200, 160, 32, 2, 124, 720, 1040, 480, 64
Links
- Indranil Ghosh, Rows 1..125, flattened
Crossrefs
Cf. A008277.
Programs
-
Mathematica
nn=8; a=Exp[x]-1; Map[Select[#, #>0&]&, Drop[Range[0,nn]! CoefficientList[Series[Exp[y a]^2, {x,0,nn}], {x,y}], 1]]//Grid (* or *) Flatten[Table[StirlingS2[n,k]*2^k,{n,1,10},{k,1,n}]] (* Indranil Ghosh, Feb 22 2017 *) BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]]; B = BellMatrix[2&, rows = 12]; Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
-
Python
# The function BellMatrix is defined in A264428. # Adds (1,0,0,0, ..) as column 0. BellMatrix(lambda n: 2, 9); # Peter Luschny, Jan 29 2016
Formula
E.g.f.: A(x,y)^2 where A(x,y) is the e.g.f. for A008277.
Comments