cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227450 Triangular array read by rows. T(n,k) = A008277(n,k)*2^k; n >= 1, 1 <= k <= n.

Original entry on oeis.org

2, 2, 4, 2, 12, 8, 2, 28, 48, 16, 2, 60, 200, 160, 32, 2, 124, 720, 1040, 480, 64, 2, 252, 2408, 5600, 4480, 1344, 128, 2, 508, 7728, 27216, 33600, 17024, 3584, 256, 2, 1020, 24200, 124320, 222432, 169344, 59136, 9216, 512, 2, 2044, 74640, 545680, 1360800, 1460928, 752640, 192000, 23040, 1024
Offset: 1

Views

Author

Geoffrey Critzer, Sep 22 2013

Keywords

Comments

T(n,k) is the number of ways to separate {1,2,...,n} into 2 ordered subsets S,T so that the union of S and T = {1,2,...,n} then partition each subset so that the total number of blocks over both subsets is equal to k.
Triangle T(n,k), 1<=k<=n, read by rows, given by (0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, ...) DELTA (2, 0, 2, 0, 2, 0, 2, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Sep 23 2013
Also the Bell transform of the constant sequence "a(n) = 2". For the definition of the Bell transform see A264428. - Peter Luschny, Jan 29 2016

Examples

			2,
2, 4,
2, 12, 8,
2, 28, 48, 16,
2, 60, 200, 160, 32,
2, 124, 720, 1040, 480, 64
		

Crossrefs

Cf. A008277.

Programs

  • Mathematica
    nn=8; a=Exp[x]-1; Map[Select[#, #>0&]&, Drop[Range[0,nn]! CoefficientList[Series[Exp[y a]^2, {x,0,nn}], {x,y}], 1]]//Grid
    (* or *)
    Flatten[Table[StirlingS2[n,k]*2^k,{n,1,10},{k,1,n}]] (* Indranil Ghosh, Feb 22 2017 *)
    BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    B = BellMatrix[2&, rows = 12];
    Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
  • Python
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    BellMatrix(lambda n: 2, 9); # Peter Luschny, Jan 29 2016

Formula

E.g.f.: A(x,y)^2 where A(x,y) is the e.g.f. for A008277.