cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A227478 Numbers k such that both the sum of the semiprime divisors of k and the sum of the prime divisors of k are squares.

Original entry on oeis.org

1146, 2874, 9870, 33220, 34353, 43140, 50694, 52290, 66440, 86280, 94350, 100804, 101097, 103059, 106140, 121540, 125070, 127897, 132880, 139908, 156870, 172560, 183475, 191140, 193410, 201608, 208692, 212280, 243080, 248378, 265760, 276094, 279816, 303291
Offset: 1

Views

Author

Michel Lagneau, Jul 13 2013

Keywords

Comments

The sequence is infinite: if a number of the form p(1) * p(2) * ... * p(i)^2 * p(i+1) * ... * p(m) is in the sequence where p(1), ..., p(m) are primes, then the numbers p(1) * p(2) * ... * p(i)^q * p(i+1) * ... * p(m) are also in the sequence for q = 3, 4, ... For example, the infinite subsequence 33220, 66440, 132880, ... contains the numbers of the form 2^q * 5 * 11 * 151 for q = 2, 3, 4, ... where 2+5+11+151 = 169 = 13^2 and 2*2 + 2*5 + 2*11 + 2*151 + 5*11 + 5*151 + 11*151 = 2809 = 53^2.
In this sequence, the corresponding pairs of squares are (961, 196), (2401, 484), (900, 64), (2809, 169), (4900, 361), (7225, 729), (2304, 100), (1521, 100), (2809, 169), (7225, 729), (1225, 64), (3721, 121), (12100, 289), (4900, 361), (2704, 100), (7225, 169), (8100, 400), (2916, 169), (2809, 169), (12769, 225), (1521, 100), (7225, 729), (8464, 225), (13225, 529), (5329, 121), (3721, 121), (1369, 64), (2704, 100), (7225, 169), (13689, 289), (2809, 169), (3364, 100), (12769, 225), (12100, 289), ...

Examples

			1146 = 2*3*191 is in the sequence because the divisors are {1, 2, 3, 6, 191, 382, 573, 1146}, so the sum of the semiprime divisors is 6 + 382 + 573 = 961 = 31^2 and the sum of the prime divisors is 2 + 3 + 191 = 196 = 14^2.
		

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 2 to 310000 do:x:=divisors(n):n1:=nops(x): y:=factorset(n):n2:=nops(y):s1:=0:s2:=0:for i from 1 to n1 do: if bigomega(x[i])=2 then s1:=s1+x[i]:else fi:od: s2:=sum('y[i]', 'i'=1..n2):if sqrt(s1)=floor(sqrt(s1)) and sqrt(s2)=floor(sqrt(s2)) then printf(`%d, `,n):else fi:od:
  • Mathematica
    Rest@ Select[Range[3*10^5], AllTrue[{DivisorSum[#, # &, PrimeOmega@ # == 2 &], DivisorSum[#, # &, PrimeQ]}, IntegerQ@ Sqrt@ # &] &] (* Michael De Vlieger, Sep 15 2017 *)
Showing 1-1 of 1 results.