A227478 Numbers k such that both the sum of the semiprime divisors of k and the sum of the prime divisors of k are squares.
1146, 2874, 9870, 33220, 34353, 43140, 50694, 52290, 66440, 86280, 94350, 100804, 101097, 103059, 106140, 121540, 125070, 127897, 132880, 139908, 156870, 172560, 183475, 191140, 193410, 201608, 208692, 212280, 243080, 248378, 265760, 276094, 279816, 303291
Offset: 1
Keywords
Examples
1146 = 2*3*191 is in the sequence because the divisors are {1, 2, 3, 6, 191, 382, 573, 1146}, so the sum of the semiprime divisors is 6 + 382 + 573 = 961 = 31^2 and the sum of the prime divisors is 2 + 3 + 191 = 196 = 14^2.
Programs
-
Maple
with(numtheory):for n from 2 to 310000 do:x:=divisors(n):n1:=nops(x): y:=factorset(n):n2:=nops(y):s1:=0:s2:=0:for i from 1 to n1 do: if bigomega(x[i])=2 then s1:=s1+x[i]:else fi:od: s2:=sum('y[i]', 'i'=1..n2):if sqrt(s1)=floor(sqrt(s1)) and sqrt(s2)=floor(sqrt(s2)) then printf(`%d, `,n):else fi:od:
-
Mathematica
Rest@ Select[Range[3*10^5], AllTrue[{DivisorSum[#, # &, PrimeOmega@ # == 2 &], DivisorSum[#, # &, PrimeQ]}, IntegerQ@ Sqrt@ # &] &] (* Michael De Vlieger, Sep 15 2017 *)
Comments