cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227499 Number of the Lipschitz quaternions in a reduced system modulo n.

Original entry on oeis.org

1, 8, 48, 128, 480, 384, 2016, 2048, 3888, 3840, 13200, 6144, 26208, 16128, 23040, 32768, 78336, 31104, 123120, 61440, 96768, 105600, 267168, 98304, 300000, 209664, 314928, 258048, 682080, 184320, 892800, 524288, 633600, 626688, 967680, 497664, 1822176
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    cuater[n_] := Flatten[Table[{a, b,c,d},{a, n}, {b, n}, {c, n}, {d, n}], 3]; a[n_] := Length@Select[cuater[n], GCD[#.#, n] == 1 &]; Array[a,20]
    f[p_, e_] := (p-1)*p^(4*e-1) * If[p == 2, 1, 1 - 1/p^2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 13 2024 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, p = f[i,1]; e = f[i, 2]; (p-1)*p^(4*e-1) * if(p == 2, 1, 1 - 1/p^2));} \\ Amiram Eldar, Feb 13 2024

Formula

Multiplicative: a(2^s) = 2^(4s-1); a(3^s) = 16*3^(4s-3); a(5^s) = 32*3*5^(4s-3).
From Amiram Eldar, Feb 13 2024: (Start)
Multiplicative with a(2^e) = 2^(4*e-1), and a(p^e) = p^(4*e-3) * (p-1)^2 * (p+1) for an odd prime p.
Dirichlet g.f.: zeta(s-4) * (1 - 1/2^(s-3)) * Product_{p prime > 2} (1 - 1/p^(s-3) - (p-1)/p^(s-1)).
Sum_{k=1..n} a(k) = (12/55) * c * n^5 + O(n^4 * log(n)), where c = Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4) = 0.53589615382833799980... (Calderón et al., 2015).
Sum_{n>=1} 1/a(n) = (17*Pi^8/57240) * Product_{p prime} (1 - 2/p^2 + 1/p^4 + 1/p^5 + 2/p^6 - 1/p^8) = 1.16039588611967540703... . (End)